

WIRE ROPE

CONTENTS

Profile of Tokyo Rope Mfg. Co., Ltd.	3~8
Outline of Wire Ropes	9~18
Wire Rope Standard	19~81
1 Cross Lay Rope / 19~23	

2 Parallel Lay Rope (Super-Rope) / 24~40

③ Super-Coat Rope / 41~43

④ Wire Rope with Profile Wires / 44~50

5 Elevator Rope / 51~58

6 Rotation-Resistant Rope / 59~68

⑦ Cable Laid Rope / 69~70

(8) Locked Coil Rope (for rails) / 71~80

③ ZINCAL Rope / 81

Rope End Processing

82~92

1) TOYO-LOK / 82~85

② SINGLE-LOCK (Swage Socket) / 86~91

③ Socket Processing / 92

Rope End Metal Fittings	93~99
Reference Charts	100~103

The Yokohama Bay Bridge is the world's largest dual structure suspension bridge. The cables supporting this bridge are the NEW-PWS of this company.

Realizing a New Dream on Past Achievements.

The Ryuoh Ropeway. The main rope for this gondola, the largest of its kind in the world, with a capacity for 166 people, is this company's 62mm Locked Coil Rope.

Green Dome Maebashi prides itself as Japan's largest steel frame space which uses no columns or pilasters. The roof is held taut with cables [beam string structure].

Based

The wire ropes of this company with their superior characteristics are also indispensable for cranes, including high lift cranes and ship derricks.

Established in 1887, this company was the first rope maker in the Orient. With a tradition of over one century, we boast unrivalled technologies and facilities. The wire ropes born from this ideal environment are being used widely in all kinds of buildings and structures that are, today, a part of Japan's history, as well as for industrial machines and equipment. As Japan's leading rope maker, this company is turning out highly reliable products to meet the needs of the new age.

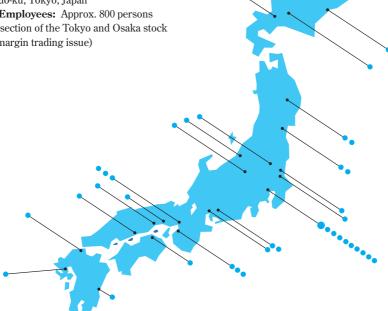
The Tokyo Metropolitan Government Office. This 48-story 243 meters high giant building has 83 elevators. The wire ropes of this company are used for all of these elevators.

The Akashikaikyou Bridge (3,911meters). The longest suspension bridge in the world.

Works of This Company

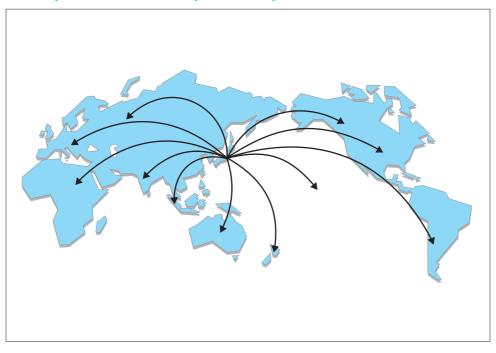
Tsuchiura Works

Nov. 1969
275,000m²
92,000m²
,
5,000t/month
5,000t/month
Registration No. JICQA 3306
Registration No. JICQA E1781



Sakai Works

Established:	Sep. 2003
Area:	50,000m²
Floor space:	28,000m ²
Production capacit	У
Wire rope :	1,000t/month
Wire:	800t/month
ISO 9001 :	Registration No. JICQA 3306
ISO 14001 :	Registration No. JICQA E1779


Outline of Company

Established: April 1, 1887 Capital: 15,074,160,000 yen Head Office: (Nihonbashi Front Bldg) 6-2, Nihonbashi 3-chome, Chuo-ku, Tokyo, Japan Number of Employees: Approx. 800 persons Shares: 1st section of the Tokyo and Osaka stock exchanges (margin trading issue)

•Tokyo Rope Mfg. Co., Ltd. Head office: Tokyo Branch office: Osaka, Sapporo Works: Tsuchiura, Sakai, Nagoya, Kyushu

●Affiliated Companies of Tokyo Rope Toko Steel Cord Co., Ltd. Ako Rope Co., Ltd. Jiangsu Tokyo Rope Co., Ltd. Tokyo Seiko Rope Mfg. Co., Ltd. Toko Machinary Co., Ltd. Tokyo Bridge Co., Ltd. Nihon Tokushu Gokin Mfg. Co., Ltd. Tokyo Seiko Technos. Co., Ltd. Shinyo Mfg. Co., Ltd. Tokyo Rope (changzhou) Co., Ltd. Tokyo Rope (hong kong) Co., Ltd. Tokyo Rope (Vietname) Co., Ltd.

Principal Countries to Where Exports are Being Made

The products of our company is used throughout the world around the south east Asia such as Taiwan, Hongkong, Singapore including China.

Characteristics of The Company

(1)The latest technologies and facilities

Making full use of its long history and rich experience, this company is constantly developing new and advanced products, based on the latest technology and never-ending research and efforts. As a result, wire ropes with diameters up to 200mm and wires with a diameter of 0.03mm are being turned out, depending on the use.

At the same time, such new products as "sintered products", "metal fibres", and "Aramid fibres rope", "carbon fibre composite Aramid cables", "Zn + 590Al +Na alloy plating (product name: Zincal) among others are being developed one after the other.

Among the facilities are an ultra-large size closing machine, a stranding machine exclusively for locked coils, a high speed plating furnace (zinc, Zincal, brass), pretension devices, a 1,000 ton tension machine, an EPMA, a fluorescent X-ray analyzer, among others. Also, to meet the needs for ropes for ultra-long bridges, this company has the necessary (Bunding) technology and the facilities for turning out parallel wire strands and the NEW-PWS.

(2)Quality

The products of this company are of uniform high quality and are highly evaluated by users, thanks to the strict quality control and the high technical standards maintained within the company.

(3)The manufacture and processing of special products

Based on its rich experience and engineering expertise, the company is turning out products to meet all kinds of needs, both large and small using special equipment and facilities. Large products include locked coil ropes, oval strand ropes, and ultra-large diameter ropes while small, products include steel cords, wire ropes for Aeronautical use.

While manufacturing ultra fine ropes, the company is also manufacturing ultra-strong ropes, high corrosion resistant plating ropes and other special kinds of ropes. The company also leads the industry in developing Toyo-Lok processing and Single-Lok pretension processing. The company is second to none in all aspects and its superior capabilities are highly evaluated by the users.

(4)Research and Development

This company has a history of more than 125 years and based on the technology nurtured during that time has been pushing forward the development of new products and new technologies with importance placed on the needs of the users. At the same time, the company has been actively carrying out research using the latest electronic equipment.

During this period, many products were born, such as steel cords for tires together with the advancement of superhighways, fine ceramics, carbon fibre composite cables and ultra-small diameter metal fibres. This company has been constantly improving the quality of wire ropes, its principal product, for many years and has also been automating the processes. A representative example of this is the various kinds of wire ropes it has been supplying for the bridges connecting Honshu with Shikoku.

Main Research Facilities

- •Field Emission type Scanning Electron Microscope (FE-SEM)
- Electron Probe Micro Analyzer (EPMA)
- Inductively Coupled Plasma Spectroscope (ICPS)
- Rotorflex type X-ray analyzer
- Microfluorescent X-ray analyzer
- Atomic (absorption) spectrophotmeter
- •Three dimensional surface coarseness and shape measuring instrument
- Differential scanning calorimeter
- Rapid carbon analyzer
- Gas chromatograph
- Various kinds of wire fatigue testers
- Relaxation tester
- Various kinds of rope bend fatigue testers
- Rope bending fatigue tester
- Rope tensile fatigue tester
- Low temperature fatigue tester
- Various kinds of steel cord fatigue testers
- FALEX wear tester
- •Salt spray tester
- 25m High Elevator Fatigue testing fower
 Various kinds of experiment devices Annealing, electro-
- coating, melt coating blueing, wire stretching, lay wire, rope end processing, vacuum annealing, die processing
- Rubber vulcanizing press machine

ISO QUALITY SYSTEM ······ ISO 9001 JICQA 3306

ISO Enviromental Management System

- Tsuchiura Works ······ IS014001 JICQA E1781
- Sakai Works IS014001 JICQA E1779

Japanese Industrial Standard (JIS) Designation Approved Items Table

Works	ltem	Approval No.	Approval date
	G 3525 Wire ropes G 3546 Wire ropes with profile wires	QA0307051	January 22, 2008
	G 3536 Uncoated stress-relieved steel wires and strands for prestressed concrete	QA0307054	January 22, 2008
Tsuchiura	uchiura G 3537 Zinc-coated steel wire strands	QA0307055	January 22, 2008
	G 3521 Hard drawn steel wires	QA0307052	January 22, 2008
	G 3547 Zinc-coated low carbon steel wires	QA0307053	January 22, 2008
	G 3525 Wire ropes G 3546 Wire ropes with profile wires	QA0307051	January 22, 2008
	G 3537 Zinc-coated steel wire strands	QA0307055	January 22, 2008
Sakai	G 3521 Hard drawn steel wires G 3548 Zinc-coated steel wires	QA0307052	January 22, 2008
	G 3547 Zinc-coated low carbon steel wires	QA0307053	January 22, 2008
	G 3549 Wire ropes for structure	QA0312001	June 26, 2012

Division	Organization	Target item	Approval No.	Standard No. type	Approval date
	Industrial Safety Division Ministry of Labour	TOYO-LOK			February 1957
Head	LR	TOYO-LOK			July 1969
Office	Ministry of Construction	Wire ropes with profile wires for Elevator	Tojushihatu No.7		January 1984
	Ministry of Construction	General contractors	58-6119	Scaffold projects Steel structure projects	February 1984
	API	Works (Wire Ropes)	9A-0007	API standard	March 1974
	LR	Works (Wire Ropes)		Lloyd's Rule	March 1973
	DNV	Works (Wire Ropes)		D. N. V. Rule	May 1970
	NK	Zincal Rope	88HW-107SR		
	NTT	High corrosion resistant Steel Wire Strands			May 1989
Tsuchiura Works	Tokyo Electric Power Co.	Galvanized Steel Wire Strand			March 1986
	Kansai Electric Power Co.	Galvanized Steel Wire Strand			July 1987
	JR	Galvanized Steel Wire Strand		JRS57801-1H-14AJ3GA	January 1968
	Building Center	Low relaxation steel wires for PC	BCJ-F199	Low relaxation PCW 7 ϕ , 9 ϕ	November 1980
	NK	Tester			
	LR	Tester			
	LR	Works (Wire Ropes)		Lloyd's Rule	October 1974
	DNV	Works (Wire Ropes)		D. N. V. Rule	June 1975
Sakai	Kansai Electric Power Co.	Galvanized Steel Wire Strand			April 1986
Works	NK	Tester			
	LR	Tester			
	DNV	Tester			

Approved Items Table Other Than JIS

Characteristics

Wire ropes (referred to as ropes herein) have a complicated structure combining many wires. It is important to know the characteristics of the rope when selecting and using.

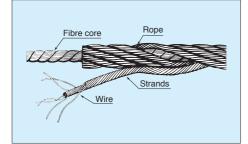
The characteristics of the rope when compared to general iron and steel secondary products may be given as.

- (1) High tensile strength
- (2) Superior in impact resistance
- (3) Long items can be made (easy to transport)
- (4) Rich in flexibility (easy to handle)

On the other hand, depending on the use,

(1) low coefficient of iselasticity

(2)torque arising.

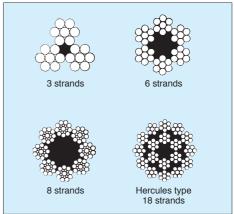

However, countermeasures are being taken, such as pretension processing for (1) above and the use of non-rotating ropes (2) above.

Construction

The construction of the rope differs depending on the number of strands, the number and position of the wires in the strand and whether it is of a fibre core, or rope core. However, an explanation of the construction of a general type rope shall be given here.

As shown in Fig. 1, the rope is made through stranding several to several tens of wires and closing the strands normally six strands around a core in a prescribed pitch.

Fig. 1 Wire rope appearance (example)


Number of Strands

From three to nine strands are used to make a rope. Apart from some special cases, practically all ropes are made of six strands so as to realize a balanced construction.

However, when used for elevators where special flexibility is required, eight strands are used. Also, when non-torque is required, there are times when two or more layers of strands are used. (See Fig. 2)

For ropes of the same diameter, generally, the more the number of strands the smaller is the diame-ter of each strand. In such cases, the rope may gain flexibility but, on the other hand, the strength will drop and the rope will become inferior in its corrosion resistant nature and shape deformation nature.

Fig. 2 Cross sectional view of wire ropes by number of strands

Laying of The Strands (number of wires and position)

One strand is normally made up of seven to several tens of wires with similar, or differing, diameters in single or multi-layers.

In the method where the wires are positioned to form more than two layers, there is the cross lay where the wires of each layer are in the same lay angle, and the parallel lay where one process is used to lay the wires so that the wires of each layer will be of the same pitch.

For strands of the same diameter, the more the number of wires, the smaller will be the diameter of each wire and the greater will be the flexibility of the strand. However, conversely, the rope will become inferior in its wear resistance nature and its shape deformation nature.

(1)Cross Lay

The cross lay is referred to as the point contact lay, as each wire is in contact with each other. The laying of the wires are carried out in such a way that the lay angle will be almost equal for each layer of wire of the same diameter. The length of the wires in each layer will also be the same and the wires of each layer will be in contact with each other.

Therefore, the tension stress which works on the wire will become uniform, but the bending stress due to the contact points will be added and so the fatigue resistance will not be as great.

Moreover, the 6×7 , 6×19 and 6×24 belong to this lay method.

In the positioning of the wires, there is the method where the number of wires around a single core are increased in units of six each, or progressively from 6 to 12 to 18 to 24 and the method where three wires are stranded and made into a core and around this the number of wires increased by six each for each layer, or 9 to 15. Normally, the former positioning is overwhelmingly the most, while the latter is seen only for the 6×24 strand (a+9+15) where the three wire core is replaced with a fibre core.

Fig. 306×19 Strand

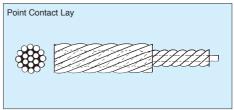
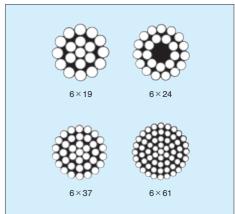



Fig. 4 Cross sectional view example of strand in the cross lay rope

(2)Parallel Lay

Parallel lay is also referred to as equal lay. It is also called one operation lay from the number of stranding processes and also as linear contact lay as each wire is in contact with each other.

Moreover, at this company, the parallel lay rope has the product name of Super Rope.

In the parallel lay, the wires of each layer are positioned in such a way that there will be no space between them and so that the upper layer wires will fit neatly into the groove of the lower wires of the strand.

For this, wires of differing diameters are positioned at the same time so that each wire layer will have the same pitch and will be in contact with each other.

Therefore, differing from the cross lay rope, although the lay angle of each wire layer and the length of the wires are not uniform, as each wire is in contact with each other, it is superior in its fatigue resistance nature.

Moreover, the $6 \times Fi(25)$, $6 \times WS(36)$ and the $8 \times S(19)$ belong to this lay method.

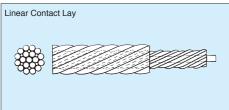



Fig. 6 Cross sectional view example of strand in parallel lay rope

Basic types

As the basic parallel lay, there are the following four types.

(a)Seale type

The number of wires of each layer is shown as 1+n+n and the number of wires of the inner and outer layers is the same.

The wires of the outer layer fit completely into the grooves of the inner layer wires. The outer layer wires of this Seale type rope is thicker when compared to other parallel lays and so it is superior, particular in its wear resistance and is mainly used for elevators.

(b)Warrington type

The number of wires of each layer is shown as 1 + n + (n + n) and there are two kinds of wires for the outer layers, one being large and the other small. The number of wires of the outer layer is double that of the inner layer and through a combination of the inner and outer layers the spaces between the wires is kept small.

This Warrington type rope is not being used to any great degree, recently.

(c)Filler type (with filler wire)

The number of wires of each layer is shown as 1 + n + (n) + 2n and the number of wires of the

outer layers is double that of the inner layer.

The inner wires and the same number of thin filler wires are used to fill the spaces in the inner and outer layers.

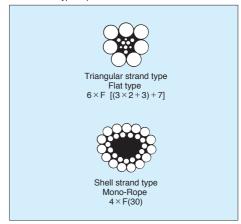
This filler type rope has a good balance between the flexibility, fatigue resistance and wear resistance and has the widest range of use among parallel lay ropes.

(d)Warrington Seale type

This is a combination between the Warrington type and the Seale type and is extremely superior in its fatigue resistance nature. It also abounds in flexibility and is superior in its wear resistance nature and so has a wide range of uses.

(3)Flat Type

The strands are combined in such a way that the outer circumference of the rope will be flat in shape. This rope has a smooth surface and so the surface pressure due to coming into contact with the groove of the drum and the sheave is smaller than that of ordinary ropes. It is also superior in its wear resistance nature. In general, the triangular strand and the shell strand are used the most. The flat strand is also being used at certain places.


(a)Triangular strand type

Up to now, an outer layer wire was positioned around the triangular wires but, recently, a single layer or two layers of wires are stranded around a triangular core made of round wires to form a round wire triangular core strand.

(b)Shell strand type

The cross sectional view of this type is in the shape of a shell and this rope is usually in three strands, or four strands.

Also, apart from the fatigue resistance nature, it also has a non-twisting nature. The Mono-Rope of this company which is being widely used belongs to this type.

Fig. 7 Cross sectional view example of strand in a flat type rope

Rope Core

The rope core can be classified into the fibre core and the steel core.

(1)Fibre core (abbreviated as FC)

The fibre core has two important functions, or ① to support the strand and at the same time to hold the shape of the rope, and ② to hold the rope grease and to supply the necessary amount of grease to the inside of the rope, during use, for lubrication and to prevent corrosion. In the past, natural fibre was mainly used but, of late, synthetic fibre is starting to be used.

Two kinds of natural fibres are used, one being the hard fibre, such as Manila and saisal, as well as jute and the other being the soft fibre, such as cotton threads, used in ropes with a comparatively small diameter. Also, for synthetic fibre, specially processed polypropylene is used so that the synthetic fibre will hold the grease well.

The characteristics of fibre core compared to steel core are

(a) The rope has a high flexibility.

(b)Impacts and vibrations to the rope are absorbed. (c)Holds rope grease well (in particular, in the case of natural fibre)

(d)The unit and mass of the rope is small.

Moreover, synthetics fiber compared to natural fibre is superior in its corrosion resistance nature.

(2)Steel core

For steel cores, there is the strand core (IWSC) and the rope core.

Among the rope cores, there is the IWRC and the CFRC.

(a)The IWSC (independent wire strand core) has the strand as the core and those that have the same construction as the side strand are referred to as the common core.

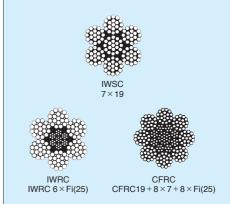
(b)The IWRC (independent wire rope core) has a single independent rope as the core. Usually, a 7×7 construction is used but depending on the use a 6×7 or a 6×19 may be used.

(c)For the CFRC (center fit wire rope core), the outer layer strand of the core rope is fitted into the groove of the inside of the side strand of the rope.

This core rope is positioned in one process with the outer layer rope. Moreover, for the core rope, the 7×7 and the $19 + 8 \times 7$ are used.

The IWSC and the CFRC are used in only a few special cases. Among ropes with a steel core, the IWRC has a good flexibility and so is used the most.

The characteristics of the steel core are as follows compared to the fibre core.


(a)The tope has a high strength.

(b)Resists lateral pressures and does not become deformed easily.

(c)The elongatior of the rope is small and the change of diameter is low.

(d)The rope has a superior heat resistance nature.

Type of lay

(1)Direction of lay

As concerns the direction of laying the rope and the strand, there is the Z lay and the S lay, as shown in Fig. 9.

In the case otherwise specified, the rope shall be made of the Z lay and the strand products of the S lay.

(2)Laying of rope

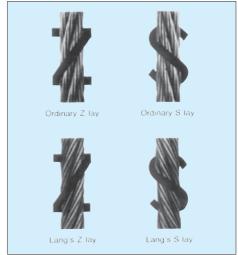
In laying of rope, there is the ordinary lay and the Lang's lay.

(a)Ordinary lay (or regular lay)

The lay of the rope and the lay of the strands are in opposite directions.

(b)Lang's lay

The lay of the rope and the lay of the strands are in the same direction.


(c)Comparison of the characteristics by laying of rope

The differences in the characteristics which inevitably arises from the differences in laying of rope are as shown in Table 1.

Table 1 Comparison of the characteristics by laying of rope

Items	Ordinary lay	Lang's lay
Appearance	The wires are approximately parallel to the axis of the rope.	The wires form a certain angle with the rope axis.
Merits	Kinks do not form easily and is easy to handle The lays are tight and the form does not crumble.	The wires appearing on the surface are long and superior in wear resistance. Flexible and has good fatigue resistance nature.
Demerits	Inferior in wear resistance nature and fatigue resistance nature compared to the Lang's lay.	The rope has a large torque and forms kinks easily.

Fig. 9 Type of lay

Preforming

Preforming is a method for lessening the springiness of the rope by giving each strand and wire a form in advance. Ropes made through this method are called preformed, or Tru-lay ropes. The strands and wires do not fall apart even when the rope is cut.

The ropes being manufactured, at present, are practically all preformed ropes. Apart from the 6×61 , the non-preformed ropes are only for special uses.

📕 Breaking Force (Grade)

Table 2 Grade of Wire ripe

For the breaking force, there is the designated breaking force and the actual breaking force. The designated breaking force is the standard value, or the lowest value of the breaking force, while the actual breaking force is the lowest value at the time the test pieces break.

The breaking force is determined by the nominal tension of the wires making up the rope and is classified as shown in Table 2.

Apart from these, this company will make ropes that exceed the strengths shown, on request.

Kinds of Coating

Ropes are usually of the bright type but when a corrosion resistant nature is required the ropes are coated.

Among the kinds of coating, there is the zinc coating and aluminum coating. Generally however, the zinc coating is used.

Apart from the general hot dip galvanizing, this company is using a high corrosion resistant alloycoating with zinc and aluminum, under the product name ZINCAL through a high speed coating method.

Both are receiving high evaluation for their supe-rior corrosion resistant nature.

Apart from these, this company can make ropes with a special coating, on request.

Grade	Remarks
Grade E (1320N/mm ² {135kgf/mm ² } class)	Bright and galvanized
Grade G (1470N/mm ² {150kgf/mm ² } class)	Galvanized
Grade A (1620N/mm ² {165kgf/mm ² } class)	Bright and galvanized
Grade B (1770N/mm ² {180kgf/mm ² } class)	Bright and galvanized
Grade T (1910N/mm ² {195kgf/mm ² } class)	Bright

(Note) (1) Wires cold worked after galvanizing shall not exceed 2.80 mm in diameter.

(2) Wires cold worked after galvanizing shall not exceed 2.24 mm in diameter.

Lubricating

Rope grease is applied to the rope at the time of manufacture to prevent corrosion and also to provide lubrication. Great care is taken to apply the rope grease uniformly and so that it will penetrate to the core and strand, through an impregnation method.

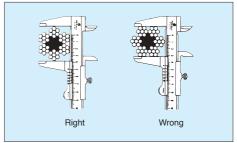
The kind of grease applied will greatly influence the life of the rope.

Table 3 below shows the number of bendings before a breaking arose, according to a fatigue test carried out by this company.

Among rope greases, there are the noncrystalline grease such as the Petrolatum and Micro Wax and the red rope grease whose principal ingredient is a special wax made up of micro crystals, as well as the black rope grease whoe principal ingredient is a special kind of bitumen, such as asphalt.

This company has manufactured a special rope grease that is superior in its rust prevention, lubrication, stability and safety.

Table 3●Comparison of the fatigue characteristics of the rope, according to Lubricated or unlubricated
 S bend fatigue : 6×Fi(17) O/L 18mm ¢ Grade B breaking force 20.7tf) D/d=28 Tension : 2.6tf


Grease	Number of repeat bending				
condition Up to the first breakage		Up to 10% wire breakage per lay			
Lubricated unlubricated	34,500 16,800	48,500 22,500			
Lubricated unlubricated	2.05	2.15			

Rope Diameter

Among rope diameters, there is the nominal diameter and the actual diameter (diameter actually measured) and, in principle, for JIS G 3525 (referred to as JIS herein) the standard number (JIS Z8601) is employed. On the other hand, as shown in Fig. 10, the actual diameter is the measurement of the circumscribed circumference and is expressed in mm.

The tolerance on rope diameter shall be ${}^{+10}_{0}$ % for the diameter less than 10mm and ${}^{+7}_{0}$ % for that equal to or more than 10mm, according to JIS.

This company is making ropes with a diameter of up to 200mm, depending on the construction of the rope.

Fig. 10 Measurement of rope diameter

Length

The length of the rope is generally set at 200m, 500m and 1,000m but a longer length can be made on request.

On the other hand, ropes that weight up to 120 tons are being made, depending on the construction of the rope.

Designation and Symbol

The rope is referred to in terms of construction, laying of rope, lay direction of lay, whether naked or galvanized, the kind of rope grease, diameter, grade, breaking force, length and reels. Expressing these in words and numbers would make the designations too lengthy and complex and so this company is using the following symbols.

(1)Construction

Moreover, in the case there is a product symbol, the symbol is placed at the front (for example, this is T in the case of Tough-Rope).

Table 4 Symbol for the kind of core

Kind of core	Symbol	Remarks
Fibre core	Usually not used	Refer to designation examples 1 and 2
Strand core	Usually not used	In the case the construction of the core strand differs from that of the strand for the rope itself, a symbol is used for expressing this construction (see example 3). In the case the construction is the same, in place of showing IWSC, this is shown as "the number of strands of the rope itself +1" in the "number of strands" column (see example 4)
Rope core	IWRC(Independent Wire Rope Core) or CFRC(Center Fit Wire Rope Core)	In the case the core rope is other than 7×7 the composition is also shown (see example 5) and in the case the core rope is 7×7 the construction of the core rope may be omitted in the parentheses (see example 6).

Table 5 Lay symbol for strand

Lay method	Lay method Cross lay Parallel lay					
Symbol	General Flat type		Flat type Seal type Warrington type Fille			Warrington Seale type
Symbol	Symbol F F		S	W	Fi	WS

(Note) The total number of wires per strand is shown but of the flat type rope, apart from the Mono-Rope, the triangular strand rope is disassembled and expressed (see example 7).

Designation examples

- 1. 6×7 , 6×19 , 6×24 , 6×37
- 2. $8 \times S$ (19), $6 \times WS$ (36)
- 3. WS (36) $+ 8 \times S$ (19)
- 4. IWSC $6 \times 37 \longrightarrow 37 + 6 \times 37 \longrightarrow 7 \times 37$
- 5. IWRC $(6 \times 19)8 \times WS$ (36)
- 6. IWRC $(7 \times 7)6 \times Fi$ (25) \longrightarrow IWRC $6 \times Fi$ (25)
- 7. $6 \times F [(3 \times 2 + 3) + 12 + 12]$

(2)Laying of rope, etc.

The direction of lay and whether galvanized, or not, and the kind rope grease used are abbreviated in Table 6.

Table 6 Abbreviation of laying of rope, etc.

Lov		Ordinary lay			Lang's lay				
Lay	Lay Z lay		S lay		Z lay		S lay		
Kind of rope	grease	Red Black		Red	Black	Red	Black	Red	Black
Bright or	Bright	0/0	C/O	O/S	C/S	O/L	C/L	O/LS	C/LS
Galvanized	Galvanized	G/O	GC/O	G/S	GC/S	G/L	GC/L	G/LS	GC/LS

(Remarks) 1. Laying of rope: The Lang's lay is shown as L and the ordinary lay as 0.

2. Direction of lay : In the case of the Z lay, no symbols are used while in the case of S lay, S is used.

3. Bright or galvanized: In the case of naked, no symbols are used, while in the case of galvanized the letter G is used.

4. Kinds of rope grease: Black rope grease is shown as C, while red rope grease is shown as O. However, in the case pf galvanized ropes, the O is omitted. Moreover, in the case of the slip prevention grease, V is used and for fishing industry use the letter T or TN is used.

(3)Grades (breaking force)

grade E, grade G, grade A, grade B grade T or breaking force are expressed in "kN" or "tf".

(4)Diameter

The rope diameter is expressed in "mm".

(5)Length

The rope length is expressed in "m".

(6)Rope designation examples

(a) 6 strands of 19 wires, fibre core, naked, red rope grease, ordinary lay, Z lay, Grade A, rope diameter 20mm, length 500m, 2 reels, shown as: $6 \times 19 \text{ O/O} 20 \text{mm}$ Grade A $500 \text{m} \times 2$

(b) 6 strands of 37 wires, fibre core, galvanized, red rope grease, ordinary lay, Z lay, Grade G, rope diameter 16mm, length 200m, 5 reels 6×37 G/O 16mm Grade G 200m $\times 5$

(c) Filler type 6 strands of 29 wires, rope core, galvanized, black rope grease, Lang's lay, S lay, Grade B, rope diameter 30mm, length 1,500m, 1 reel as: IWRC $6 \times Fi(29)$ GC/LS 30mm Grade B 1,500m

1 Cross Lay Rope

The cross lay rope construction has the longest history and, until the 1930s, when this company was established (and the domestic manufacture of rope was started) and the parallel lay rope, or the socalled seale type was developed, only the cross lay rope was used. With the appearance of the parallel lay rope, the cross lay rope gradually was replaced with the parallel lay rope. However, as the cross lay ropes had some merits which the parallel lay rope did not, such as the ease of handling, it is still continuing to be used, at present.

Main Types and Uses

Construction symbol	Main uses
6×7	Lift stay ropes, main rope for ropeways, tugboat use, winch rope for pits and inclined mine shafts, guide rope for digging shafts, trawler use, stay rope (including ship use)
6×19	Forestry industry use rope, winch rope for pits, trawler use stay rope (including ships), boring use, winches and other various kinds of machines.
6×24	Loading and unloading using cranes, etc. Rope Sling fixed shore fishing nets, fisheries industry use such as environment, elevator use, mooring ropes, tow rope, ship use such as cargo ships, winches and other machinery.
6×37 IWRC 6×37	Loading and unloading using cranes, etc., Rope Sling mooring rope, ship use such as cargo ships, lifts, ropeway tension ropes, other kinds of machinery.

6×7 (JIS) Construction $6 \times (1+6)$

Sectional area	Ordinary lay			
aiea	Orunnary lay	Lang	's lay	(Reference) Rough calculation
	Galvanized	Galvanized Bright		Unit mass
mm ²	Grade G	Grade A	Grade T	kg/m
	kN	kN	kN	ů.
14.8 26.3 33.3 41.1 59.1	19.0 33.8 42.8 52.8 76.0	21.4 38.1 48.2 59.5 85.6	24.7 43.9} 55.6 68.6 98.8	0.134 0.237 0.300 0.371 0.534
80.5 105 133 164 199	103 135 171 211 256	117 152 193 238 288	134 176 222 274 332	0.727 0.950 1.20 1.48 1.80
237 278 322 370 420	304 357 414 475 541	343 402 466 535 609	395 464 538 — —	2.14 2.51 3.34 3.80
	26.3 33.3 41.1 59.1 80.5 105 133 164 199 237 278 322 370	14.8 19.0 26.3 33.8 33.3 42.8 41.1 52.8 59.1 76.0 80.5 103 105 135 133 171 164 211 199 256 237 304 278 357 322 414 370 475	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

(Remarks) 1. Dash (----) marks represent those that can be made on request.
2. Please refer to Page 46 (Tough Rope) if a higher breaking force is required.
3. The figures shown in bold in this chart denote JIS values.

$6\times19~(\text{JIS})$ Construction $6\times(1+6+12)$

			Breakin	g force	
Rope diameter	Outer wire	Sectional area	Ordina	ry lay	(Reference) Rough calculation
ulameter	diameter	aica	Galvanized	Bright	Unit mass
mm	mm	mm ²	Grade G	Grade A	kg/m
			kN	kN	
6 8 9 10 12	0.40 0.53 0.60 0.66 0.80	14.1 25.1 31.8 39.3 56.5	18.1 32.1 40.7 50.2 72.3	19.4 34.6 43.8 54.0 77.8	0.131 0.233 0.295 0.364 0.524
14 16 18 20 22	0.93 1.06 1.19 1.32 1.45	76.9 100 127 157 190	98.4 128 163 201 243	106 138 175 216 261	0.713 0.932 1.18 1.46 1.76
24 26 28	1.58 1.70 1.86	226 265 308	289 339 393	311 365 424	2.10 2.46 2.85

$6\times24~(JIS)$ Construction $6\times(a+9+15)$

			Breakin	g force	
Rope diameter	Outer wire	Sectional area	Ordina	iry lay	(Reference) Rough calculation
ulameter	diameter	aica	Galvanized	Bright	Unit mass
mm	mm	mm ²	Grade G	Grade A	kg/m
			kN	kN	
6	0.34	12.5	16.5	17.7	0.120
8	0.44	22.2	29.3	31.6	0.212
9	0.50	28.1	37.1	39.9	0.269
10	0.56	34.8	45.8	49.3	0.332
12	0.67	50.0	65.9	71.0	0.478
14	0.79	68.1	89.7	96.6	0.651
16	0.89	89.0	117	126	0.850
18	1.00	113	148	160	1.08
20	1.10	139	183	197	1.33
22	1.22	168	222	239	1.61
24	1.33	200	264	284	1.91
26	1.43	235	309	333	2.24
28	1.56	272	359	387	2.60
30	1.65	313	412	444	2.99
32	1.78	356	469	505	3.40
36	2.00	450	593	639	4.30
40	2.20	556	732	789	5.31
44	2.44	673	886	954	6.43
48	2.66	801	1050	1140	7.65
50	2.78	869	1140	1230	8.30
53	2.95	976	1290	1380	9.33
56	3.12	1090	1440	1550	10.4
60	3.35	1250	1650	1770	12.0

6×37 (JIS) Construction $6 \times (1 + 6 + 12 + 18)$

			Breakin	g force	
Rope diameter	Outer wire	Sectional area	Ordina	ary lay	(Reference) Rough calculation
ulameter	diameter	aiea	Galvanized	Bright	Unit mass
mm	mm	mm ²	Grade G	Grade A	kg/m
			kN	kN	Ū.
6	0.29	14.1	17.8	19.1	0.129
8	0.38	25.2	31.6	34.0	0.230
9	0.43	31.8	40.0	43.0	0.291
10	0.48	39.3	49.4	53.1	0.359
12	0.57	56.6	71.1	76.5	0.517
14	0.67	77.0	96.7	104	0.704
16	0.76	101	126	136	0.920
18	0.86	127	160	172	1.16
20	0.95	157	197	212	1.44
22	1.05	190	239	257	1.74
24	1.14	226	284	306	2.07
26	1.22	266	334	359	2.43
28	1.33	308	387	416	2.82
30	1.41	354	444	478	3.23
32	1.52	402	505	544	3.68
36	1.70	509	640	688	4.66
40	1.88	629	790	850	5.75
44	2.08	761	956	1030	6.96
48	2.27	905	1140	1220	8.28
52	2.48	1060	1330	1440	9.72
56	2.66	1230	1550	1670	11.3
60	2.86	1410	1780	1910	12.9
67	3.16	1760	2220	2380	16.1
71	3.35	1980	2490	2680	18.1
75	3.55	2210	2780	2990	20.2
80	3.75	2520	3160	3400	23.0
85	4.05	2840	3570	3840	26.0
90	4.28	3180	4000	4300	29.1
95	4.53	3550	4450	4790	32.4
100	4.73	3930	4940	5310	35.9
(Demodel) 1	The Course of		this short does to 110 or box		

2 Parallel Lay Rope (Super-Rope)

After the end of the war, the industries of Japan rapidly became mechanized and more efficient, in all fields, and ropes with an even higher performance than the conventional lay ropes came into demand.

In order to meet this demand, this company started full-scale production of the Super-Rope (the product name for the parallel lay rope of this company) from around 1953. The demand for this rope was greater than expected and Super-Rope was established as the ideal rope for high performance and high efficiency machines and, ever since, its reputation has grown.

At first, of the basic types of Super-Rope, such as the Seale type, Warrington type and Filler type, the Filler type was mainly used.

However, later, as the range of uses widened the semi-Seale type which is a combination between the cross lay and the parallel lay was developed.

And, to meet the demand for even higher performance, the Seale filler type and the Warrington Seale type which are combinations of the basic types were developed.

In particular, the balance of each wire diameter composing the strand for the Warrington Seale type is good and, as it is rich in flexibility and fatigue resistance nature, it is being widely used at present.

Characteristics

(a) For the conventional cross lay rope, the pitch differed as the wires of each strand were either outer lay or inner lay. Therefore, the wires of each layer were in point contact and in cross lay while, for the Super-Rope, the outer lay and the inner lay have the same pitch and so the wires of each lay are in linear contact.

(See Fig. 1)

(b)As can be seen in the cross sectional drawing, in Fig. 1(2), as the outer layer wire fits in between the inner lay wires, the strands are tightly bound and the rope is not deformed easily.

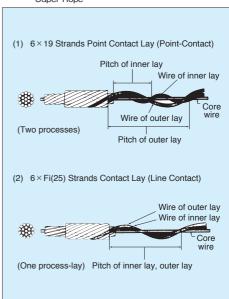
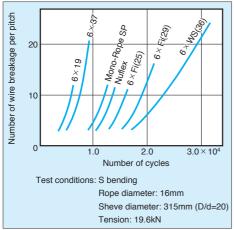



Fig. 1 Comparison of the cross lay rope and the Super Rope

(c)As mentioned above, as the wires are in linear contact with each other, fatigue and breakage of the wire due to inner wear and secondary bends, are low and as the pitches are closer together, compared to the cross lay rope, it will display its merits at the condition where there is much bending fatigue. (See Fig. 2)

Fig. 2 Results of the fatigue tests by rope construction

(d)As the strand is bound firmly, it does not loose its shape easily even when it receives a strong pressure and the stress is distributed evenly.

(e)The cross section is larger than the cross lay rope and so has a high breaking force.

Selection Standard

There many kinds of ropes and the kinds of machines to which they are attached are almost infinite and so, including the Super-Rope, the best kind of rope to attach to a particular o machine, or equipment, cannot be decided easily. But, compared to the cross lay rope which was used up to now as a rigging, the standard for selecting the Super-Rope is generally as shown in the table below.

Conventional cross lay rope	Representative Super Ropes compared to the cross lay ropes
6×7	$6 \times Fi(17)$ $6 \times S(19)$
6×19	6 × Fi(21) 6 × Fi(25) 6 × WS(26)
6×24	6×Fi(29) 6×WS(31)
6×37	6 × Fi(29) 6 × WS(36) 6 × WS(41)

This is only a typical example. The required Super Rope should be selected according to the use.

A rope with a rope core (IWRC) should be selected if the rope is to be used in a very hot environment, if it is wound randomly on a small diameter drum, or if the rope is subject to strong sidewise pressure, or when a non-stretching rope is required.

This company is also making the Long Super-Rope which has a smaller torque nature than general ropes for cranes with a comparatively large lifting range.

Main Ty	vpes and	Uses

Construction symbol	Main uses
6×S(19)	Ropeways, inclined shaft winches, fisheries industry use
IWRC 6×S(19)	Fencing use, bulldozer use
6×Fi(25)	Ropeways, inclined shaft winches, general crane use, forestry industry use
IWRC 6×Fi(25)	Fencing use, heavy machinery use
6×Fi(29)	Ropeways, general crane use
IWRC 6×Fi(29)	General crane use, heavy equipment use
6×WS(26)	General crane use, fisheries industry trawler use (trawl warp)
IWRC 6×WS(26)	General crane use, bulldozer use
6×WS(31)	General crane use, fisheries industry trawler use (trawl rope)
IWRC 6×WS(31)	General crane use, heavy equipment use, bulldozer use
6×WS(36)	Ropeway stay rope use, general crane use
IWRC 6×WS(36)	General crane use, ship use
6×WS(41)	General crane use
IWRC 6×WS(41)	General crane use

$6 \times S$ (19) (JIS) Construction $6 \times S$ (1 + 9 + 9)

				Breaking force		
Rope diameter	Outer wire	Sectional area		Ordinary lay • Lang's lay		(Reference) Rough calculation
ulumotor	diameter	urcu	Bright • G		Bright	Unit mass
mm	mm	mm ²	Grade A	Grade B	Grade T	kg/m
			kN	kN	kN	
6 6.3 8 9 10	0.50 0.52 0.65 0.74 0.82	15.1 16.6 26.8 33.9 41.9	19.6 21.6 34.9 44.1 54.5	20.9 23.0 37.2 47.0 58.1	22.0 24.2 39.1 49.5 61.1	0.139 0.153 0.247 0.312 0.386
11.2 12 12.5 14 16	0.92 0.99 1.03 1.15 1.32	52.6 60.4 65.5 82.1 107	68.3 78.4 85.1 107 139	72.8 83.6 90.7 114 149	76.6 88.0 95.4 120 156	0.484 0.556 0.603 0.756 0.988
18 20 22.4 25 28	1.47 1.63 1.83 2.06 2.30	136 168 210 262 329	176 218 273 340 427	188 232 291 363 455	198 244 306 382 479	1.25 1.54 1.94 2.41 3.02
30 31.5 33.5 35.5 37.5 40	2.44 2.58 2.74 2.90 3.07 3.25	377 416 470 528 589 671	490 540 611 686 766 871	523 576 652 732 816 929	550 606 685 770 859 977	3.47 3.83 4.36 5.43 6.17

(Remarks) 1. Dash (---) marks represent those that can be made on request.

IWRC $6 \times S$ (19) (JIS) Construction $7 \times 7 + 6 \times S$ (1 + 9 + 9)

D	0.1	Quarternal	Breakin	•	(D. (
Rope diameter	Outer wire	Sectional area	Ordinary lay	<u> </u>	(Reference) Rough calculation
	diameter		Bright • Galvanized	Bright	Unit mass
mm	mm	mm ²	Grade B	Grade T	kg/m
			kN	kN	
8 9 10 11.2 12.5	0.65 0.74 0.82 0.92 1.03	31.6 40.0 49.4 61.9 77.1	42.4 53.6 66.2 83.0 103	44.5 56.3 69.5 87.2 109	0.275 0.348 0.430 0.539 0.672
14 16 18 20 22.4	1.15 1.32 1.47 1.63 1.83	96.7 126 160 197 248	130 169 214 265 332	136 178 225 278 349	0.843 1.10 1.39 1.72 2.16
25 28 30 31.5 33.5	2.06 2.30 2.44 2.58 2.74	309 387 444 490 554	414 519 596 657 743	435 545 626 690 780	2.69 3.37 3.87 4.27 4.83
35.5 37.5 40	2.90 3.07 3.25	622 694 790	834 931 1060	876 978 1110	5.42 6.05 6.88

(Remarks) 1. Dash (---) marks represent those that can be made on request.

$6 \times Fi (25) (JIS)$ Construction $6 \times Fi [1 + 6 + (6) + 12]$

				Breaking force		
Rope diameter	Outer wire	Sectional area		Ordinary lay • Lang's lay		(Reference) Rough calculation
ulameter	diameter	aica	Bright • G	alvanized	Bright	Unit mass
mm	mm	mm ²	Grade A	Grade B	Grade T	kg/m
			kN	kN	kN	
6	0.39	15.1	19.6	20.9	22.0	0.139
6.3	0.41	16.6	21.6	23.0	24.2	0.153
8	0.52	26.8	34.9	37.2	39.1	0.247
9	0.59	33.9	44.1	47.0	49.5	0.312
10	0.65	41.9	54.5	58.1	61.1	0.386
11.2	0.73	52.6	68.3	72.8	76.6	0.484
12	0.79	60.4	78.4	83.6	88.0	0.556
12.5	0.82	65.5	85.1	90.7	95.4	0.603
14	0.92	82.1	107	114	120	0.756
16	1.05	107	139	149	156	0.988
18	1.17	136	176	188	198	1.25
20	1.30	168	218	232	244	1.54
22.4	1.45	210	273	291	306	1.94
25	1.63	262	340	363	382	2.41
28	1.83	329	427	455	479	3.02
30	1.94	377	490	523	550	3.47
31.5	2.06	416	540	576	606	3.83
33.5	2.17	470	611	652	685	4.33
35.5	2.30	528	686	732	770	4.86
37.5	2.44	589	766	816	859	5.43
40	2.58	671	871	929	977	6.17

IWRC $6 \times Fi$ (25) (JIS) Construction $7 \times 7 + 6 \times Fi$ [1 + 6 + (6) + 12]

			Breakin	g force	
Rope diameter	Outer wire	Sectional area	Ordinary lay	• Lang's lay	(Reference) Rough calculation
ulumotor	diameter	urcu	Bright • Galvanized	Bright	Unit mass
mm	mm	mm ²	Grade B	Grade T	kg/m
			kN	kN	Ű.
8 9 10 11.2 12.5	0.52 0.59 0.65 0.73 0.82	31.6 40.0 49.4 61.9 77.1	42.4 53.6 66.2 83.0 103	44.5 56.3 69.5 87.2 109	0.275 0.348 0.430 0.539 0.672
14 16 18 20 22.4	0.92 1.05 1.17 1.30 1.45	96.7 126 160 197 248	130 169 214 265 332)	136 178 225 278 349	0.843 1.10 1.39 1.72 2.16
25 28 30 31.5 33.5	1.63 1.83 1.94 2.06 2.17	309 387 444 490 554	414 519 596 657 743	435 545 626 690 780	2.69 3.37 3.87 4.27 4.83
35.5 37.5 40	2.30 2.44 2.58	622 694 790	834 931 1060	876 978 1110	5.42 6.05 6.88

$6 \times Fi$ (29) (JIS) Construction $6 \times Fi [1 + 7 + (7) + 14]$

Rope diameter	Outer wire	Sectional area	Breakin		
			Ordinary lay • Lang's lay		(Reference) Rough calculation
ulameter	diameter	died	Bright • Galvanized	Bright	Unit mass
mm	mm	mm ²	Grade B	Grade T	kg/m
			kN	kN	
8	0.46	27.2	37.9	39.9	0.253
9	0.52	34.5	48.0	50.4	0.321
10	0.57	42.6	59.2	62.3	0.396
11.2	0.64	53.4	74.3	78.1	0.496
12.5	0.72	66.5	92.5	97.3	0.618
14	0.81	83.4	116	122	0.776
16	0.92	109	152	159	1.01
18	1.03	138	192	202	1.28
20	1.14	170	237	249	1.58
22.4	1.28	213	297	312	1.99
25	1.43	266	370	389	2.47
28	1.60	334	464	488	3.10
30	1.70	383	533	560	3.56
31.5	1.80	422	588	618	3.93
33.5	1.91	478	665	699	4.44
35.5	2.03	536	746	785	4.99
37.5	2.14	598	833	876	5.57
40	2.27	681	948	996	6.33
42.5	2.40	769	1070	1120	7.15
45	2.58	862	1200	1260	8.01
47.5	2.70	960	1340	1400	8.93
50	2.86	1060	1480	1560	9.90
53	3.03	1200	1660	1750	11.1
56	3.20	1330	1860	1950	12.4
60	3.45	1530	2130	2240	14.2

IWRC $6 \times Fi$ (29) (JIS) Construction $7 \times 7 + 6 \times Fi$ [1 + 7 + (7) + 14]

	Outer wire	Sectional	Breakin	(Reference) Rough calculation	
Rope diameter			Ordinary lay		
ulaintetet	diameter	area	Bright • Galvanized	Bright	Unit mass
mm	mm	mm ²	Grade B	Grade T	kg/m
			kN	kN	
8	0.46	32.0	43.3	45.5	0.282
9	0.52	40.5	54.8	57.6	0.356
10	0.57	50.0	67.7	71.1	0.440
11.2	0.64	62.7	84.9	89.2	0.552
12.5	0.72	78.1	106	111	0.688
14	0.81	98.0	133	139	0.863
16	0.92	128	173	182	1.13
18	1.03	162	219	230	1.43
20	1.14	200	271	284	1.76
22.4	1.28	251	340	357	2.21
25	1.43	312	423	444	2.75
28	1.60	392	531	558	3.45
30	1.70	450	609	640	3.96
31.5	1.80	496	672	706	4.37
33.5	1.91	561	760	798	4.94
35.5	2.03	630	853	896	5.55
37.5	2.14	703	952	1000	6.19
40	2.27	800	1080	1140	7.04
42.5	2.40	903	1220	1280	7.95
45	2.58	1010	1370	1440	8.91
47.5	2.70	1130	1530	1600	9.93
50	2.86	1250	1690	1780	11.0
53	3.03	1400	1900	2000	12.4
56	3.20	1570	2120	2230	13.8
60	3.45	1800	2440	2560	15.8

$6 \times WS$ (26) (JIS) Construction $6 \times WS$ [1 + 5 + (5 + 5) + 10]

			Breakin	g force	
Rope diameter	Outer wire	Sectional area	Ordinary lay	• Lang's lay	(Reference) Rough calculation
ulameter	diameter	aiea	Bright • Galvanized	Bright	Unit mass
mm	mm	mm ²	Grade B	Grade T	kg/m
			kN	kN	
8 9 10 11.2 12	0.60 0.68 0.75 0.84 0.90	26.8 33.9 41.9 52.6 60.4	37.2 47.0 58.1 72.8 83.6	39.1 49.5 61.1 76.6 88.0	0.247 0.312 0.386 0.484 0.556
12.5 14 16 18 20	0.95 1.06 1.20 1.35 1.50	65.5 82.1 107 136 168	90.7 114 149 188 232	95.4 120 156 198 244	0.603 0.756 0.988 1.25 1.54
22.4 25 28 30 31.5	1.68 1.88 2.11 2.24 2.37	210 262 329 377 416	291 363 455 523 576	306 382 479 550 606	1.94 2.41 3.02 3.47 3.83
33.5 35.5 37.5 40	2.51 2.66 2.82 3.00	470 528 589 671	652 732 816 929	685 770 859 977	4.33 4.86 5.43 6.17

IWRC $6 \times$ WS (26) (JIS) Construction $7 \times 7 + 6 \times$ WS [1 + 5 + (5 + 5) + 10]

			Breakin	g force	
Rope diameter	Outer wire	Sectional area	Ordinary lay	• Lang's lay	(Reference) Rough calculation
ulainetei	diameter	aica	Bright • Galvanized	Bright	Unit mass
mm	mm	mm ²	Grade B	Grade T	kg/m
			kN	kN	0.
8 9 10 11.2 12.5	0.60 0.68 0.75 0.84 0.95	31.6 40.0 49.4 61.9 77.1	42.4 53.6 66.2 83.0 103	44.5 56.3 69.5 87.2 109	0.275 0.348 0.430 0.539 0.672
14 16 18 20 22.4	1.06 1.20 1.35 1.50 1.68	96.7 126 160 197 248	130 169 214 265 332	136 178 225 278 349	0.843 1.10 1.39 1.72 2.16
25 28 30 31.5 33.5	1.88 2.11 2.24 2.37 2.51	309 387 444 490 554	414 519 596 657 743	435 545 626 690 780	2.69 3.37 3.87 4.27 4.83
35.5 37.5 40	2.66 2.82 3.00	622 694 790	834 931 1060	876 978 1110	5.42 6.05 6.88

6 × WS (31) (JIS) Construction 6 × WS [1 + 6 + (6 + 6) + 12]

	_		Breakin		
Rope diameter	Outer wire	Sectional area	Ordinary lay	• Lang's lay	(Reference) Rough calculation
ulametei	diameter	alea	Bright • Galvanized	Bright	Unit mass
mm	mm	mm ²	Grade B	Grade T	kg/m
			kN	kN	
16 18 20 22.4 25	1.05 1.17 1.30 1.45 1.63	111 140 173 217 270	152 192 237 297 370 464	159 202 249 312 389 488	1.01 1.28 1.58 1.99 2.47 3.10
28 30 31.5 33.5 35.5	1.83 1.94 2.06 2.17 2.30	339 389 428 485 544	404 533 588 665 746	488 560 618 699 785	3.10 3.56 3.93 4.44 4.99
37.5 40 42.5 45 47.5	2.44 2.58 2.74 2.95 3.07	607 691 780 874 974	833 948 1070 1200 1340	876 996 1120 1260 1400	5.57 6.33 7.15 8.01 8.93
50 53 56 60	3.25 3.45 3.65 3.93	1080 1210 1350 1550	1480 1660 1880 2130	1560 1750 1950 2240	9.90 11.1 12.4 14.2

IWRC $6 \times$ WS (31) (JIS) Construction $7 \times 7 + 6 \times$ WS [1 + 6 + (6 + 6) + 12]

			Breakin	Breaking force		
Rope diameter	Outer wire	Sectional area	Ordinary lay	• Lang's lay	(Reference) Rough calculation	
ulameter	diameter	area	Bright • Galvanized	Bright	Unit mass	
mm	mm	mm ²	Grade B	Grade T	kg/m	
			kN	kN		
16 18 20 22.4 25	1.05 1.17 1.30 1.45 1.63	130 164 202 254 316	173 219 271 340 423	182 230 284 357 444	1.13 1.43 1.76 2.21 2.75	
28 30 31.5 33.5 35.5	1.83 1.94 2.06 2.17 2.30	397 456 502 568 638	423 531 609 672 760 853	558 640 706 798 896	3.45 3.96 4.37 4.94 5.55	
37.5 40 42.5 45 47.5	2.44 2.58 2.74 2.95 3.07	712 810 914 1030 1140	952 1080 1220 1370 1530	1000 1140 1280 1440 1600	6.19 7.04 7.95 8.91 9.93	
50 53 56 60	3.25 3.45 3.65 3.93	1270 1420 1590 1820	1690 1900 2120 2440	1780 2000 2230 2560	11.0 12.4 13.8 15.8	

6 × WS (36) (JIS) Construction 6 × WS [1 + 7 + (7 + 7) + 14]

			Breakin	g force	
Rope diameter	Outer wire	Sectional area	Ordinary lay	• Lang's lay	(Reference) Rough calculation
uluinotoi	diameter	urcu	Bright • Galvanized	Bright	Unit mass
mm	mm	mm ²	Grade B	Grade T	kg/m
			kN	kN	ů.
16 18 20 22.4 25	0.92 1.03 1.14 1.28 1.43	111 140 173 217 270	152 192 237 297 370	159 202 249 312 389	1.01 1.28 1.58 1.99 2.47
28 30 31.5 33.5 35.5	1.60 1.70 1.80 1.91 2.03	339 389 428 485 544	464 533 588 665 746	488 560 618 699 785	3.10 3.56 3.93 4.44 4.99
37.5 40 42.5 45 47.5	2.14 2.27 2.40 2.58 2.70	607 691 780 874 974	833 948 1070 1200 1340	876 996 1120 1260 1400	5.57 6.33 7.15 8.01 8.93
50 53 56 60	2.86 3.03 3.20 3.45	1080 1210 1350 1550	1480 1660 1860 2130	1560 1750 1950 2240	9.90 11.1 12.4 14.2

IWRC $6 \times$ WS (36) (JIS) Construction $7 \times 7 + 6 \times$ WS [1 + 7 + (7 + 7) + 14]

	_		Breakin	g force	
Rope diameter	Outer wire	Sectional area	Ordinary lay	• Lang's lay	(Reference) Rough calculation
ulameter	diameter	area	Bright • Galvanized	Bright	Unit mass
mm	mm	mm ²	Grade B	Grade T	kg/m
			kN	kN	
16 18 20 22.4 25	0.92 1.03 1.14 1.28 1.43	130 164 202 254 316	173 219 271 340 423	182 230 284 357 444	1.13 1.43 1.76 2.21 2.75
28 30 31.5 33.5 35.5	1.60 1.70 1.80 1.91 2.03	397 456 502 568 638	423 531 609 672 760 853	558 640 706 798 896	3.45 3.96 4.37 4.94 5.55
37.5 40 42.5 45 47.5	2.14 2.27 2.40 2.58 2.70	712 810 914 1030 1140	952 1080 1220 1370 1530	1000 1140 1280 1440 1600	6.19 7.04 7.95 8.91 9.93
50 53 56 60	2.86 3.03 3.20 3.45	1270 1420 1590 1820	1690 1900 2120 2440	1780 2000 2230 2560	11.0 12.4 13.8 15.8

6 × WS (41) (JIS) Construction 6 × WS [1 + 8 + (8 + 8) + 16]

			Breakin	-	
Rope diameter	Outer wire	Sectional area	Ordinary lay		(Reference) Rough calculation
	diameter		Bright • Galvanized	Bright	. Unit mass
mm	mm	mm ²	Grade B	Grade T	kg/m
			kN	kN	
30 31.5 33.5 35.5 37.5	1.52 1.60 1.70 1.80 1.91	389 428 485 544 607	533 588 665 746 833	560 618 699 785 876	3.56 3.93 4.44 4.99 5.57
40 42.5 45 47.5 50	2.03 2.14 2.30 2.40 2.55	691 780 874 974 1080	948 1070 1200 1340 1480	996 1120 1260 1400 1560	6.33 7.15 8.01 8.93 9.90
53 56 60 63 67	2.70 2.86 3.07 3.20 3.40	1210 1350 1550 1710 1940	1660 1860 2130 2350 2660	1750 1950 2240 	11.1 12.4 14.2 15.7 17.8
71 75 80 85 90	3.60 3.80 4.05 4.34 4.60	2180 2430 2760 3120 3500	2990 3330 3790 4280 4800		20.0 22.3 25.3 28.6 32.1
95	4.87	3900	5350	_	35.7

(Remarks) 1. Dash (---) marks represent those that can be made on request.

IWRC $6 \times WS$ (41) (JIS) Construction $7 \times 7 + 6 \times WS$ [1 + 8 + (8 + 8) + 16]

_	Breaking force				
Rope diameter	Outer wire	Sectional area	Ordinary lay	<u> </u>	(Reference) Rough calculation
didiffotor	diameter	urou	Bright • Galvanized	Bright	Unit mass
mm	mm	mm ²	Grade B	Grade T	kg/m
			kN	kN	
30 31.5 33.5 35.5 37.5	1.52 1.60 1.70 1.80 1.91	456 502 568 638 712	609 672 760 853 952	640 706 798 896 1000	3.96 4.37 4.94 5.55 6.19
40 42.5 45 47.5 50	2.03 2.14 2.30 2.40 2.55	810 914 1030 1140 1270	1080 1220 1370 1530 1690	1140 1280 1440 1600 1780	7.04 7.95 8.91 9.93 11.0
53 56 60 63 67	2.70 2.86 3.07 3.20 3.40	1420 1590 1820 2010 2270	1900 2120 2440 2690 3040	2000 2230 2560 —	12.4 13.8 15.8 17.5 19.8
71 75 80 85 90	3.60 3.80 4.05 4.34 4.60	2550 2850 3240 3660 4100	3410 3810 4330 4890 5480		22.2 24.8 28.2 31.8 35.6
95	4.87	4570	6110		39.7

(Remarks) 1. Dash (---) marks represent those that can be made on request.

3 Super-Coat Rope

The wire-ropes include the rope with fibre core and the rope with rope core. In case requiring a high breaking force the ropes with rope core are used, whereas the internal wearing and the internal corrosion take place as to their defect, that results the short life comparing with the ropes with fibre core.

"Super-Coat Rope" employs, in stead of the rope cores in the conventional ropes, the core rope coated with a resin. This coating avoides the side strands and the rope core from the direct contact, so as to prevent from the internal wearing and to reduce the breakage to be occured at the wires, therefore the life of the whole rope is extended.

Fig. 3 Super-Coat Rope appearance

Anti-Fatigue Characteristic

Super-Coat Rope is proven by the fatigue tests the following superior features.

(a) Comparing with conventional ropes, the repeated times in the 10% breakage in a layer have 20% longer, and the life until standard discard is extended.

(b)The ratio of the outside wire breakage shows bigger, and moreover the IWRC wire breakages are remarkably lower, that gives easier visual inspection from outside of the wire-rope.

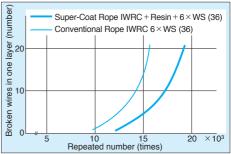


Fig. 4 Result of the fatigue tests

IWRC $6 \times$ WS (31) Construction $7 \times 7 + \text{Resin} + 6 \times$ WS [1 + 6 + (6 + 6) + 12]

Rope Outer Sectional			Breakin	(Reference)	
diameter	wire diameter	area	Bright • G Grade B	alvanized Grade T	Rough calculation Unit mass
mm	mm	mm ²	kN	kN	kg/m
16	1.05	130	173	182	1.13
18	1.17	164	219	230	1.43
20	1.30	202	271	284	1.76
22.4	1.45	254	340	357	2.21
25	1.63	316	423	444	2.75
28	1.83	397	531	558	3.45
30	1.94	456	609	640	3.96
31.5	2.06	502	672	706	4.37
33.5	2.17	568	760	798	4.94
35.5	2.30	638	853	896	5.55
37.5	2.44	712	952	1000	6.19
40	2.58	810	1080	1140	7.04
42.5	2.74	914	1220	1280	7.95
45	2.95	1030	1370	1440	8.91
47.5	3.07	1140	1530	1600	9.93
50	3.25	1270	1690	1780	11.0
53	3.45	1420	1900	2000	12.4
56	3.65	1590	2120	2230	13.8
60	3.93	1820	2440	2560	15.8

IWRC $6 \times$ WS (36) Construction $7 \times 7 + \text{Resin} + 6 \times$ WS [1 + 7 + (7 + 7) + 14]

Rope	Outer	Sectional	Breakin	(Reference)	
diameter	wire diameter	area	Bright • G Grade B		Rough calculation Unit mass
mm	mm	mm ²	kN	Grade T kN	kg/m
20	1.14	202	271	284	1.76
22.4	1.28	254	340	357	2.21
25	1.43	316	423	444	2.75
28	1.60	397	531	558	3.45
30	1.70	456	609	640	3.96
31.5	1.80	502	672	706	4.37
33.5	1.91	568	760	798	4.94
35.5	2.03	638	853	896	5.55
37.5	2.14	712	952	1000	6.19
40	2.27	810	1080	1140	7.04
42.5	2.40	914	1220	1280	7.95
45	2.58	1030	1370	1440	8.91
47.5	2.70	1140	1530	1600	9.93
50	2.86	1270	1690	1780	11.0
53	3.03	1420	1900	2000	12.4
56	3.20	1590	2120	2230	13.8
60	3.45	1820	2440	2560	15.8

4 Wire Rope with Profile Wires

(Tough-Rope, Tough-Super-Rope)

Tough-Rope and Tough-Super-Rope, among others, of this company are product names of special shape wire strands.

Recently, great advancements are being made in all kinds of industrial equipment and, together with this, the kinds of ropes used are changing from the cross lay rope to the super ropes (parallel lay ropes).

The use of the super rope is widenening, testifying to its superiority.

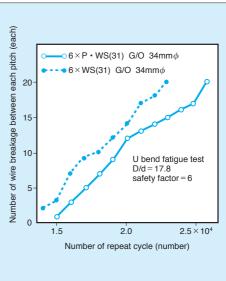
However, the demand for "even higher performance and higher quality ropes" seems to know no end. In order to meet this demand, this company is carrying out research and development on improved types of super ropes.

As a result, this company has succeeded in developing a special shape wire strand rope which, at present, is displaying its merits in various kinds of uses.

As special processing die-forming is carried out on the strands for this rope and the hitherto method where the wires are in linear contact with each other has been changed to one where the wires are in surface contact, the surface of the strand is smooth.

Characteristic

(a) High breaking force


Compared to super ropes with the same diameter, the breaking force is approximately $13 \sim 18\%$ larger, thus making the rope stronger.

(b)The fatigue resistance nature is good

As the strands are given a special processing the surface of the strand is smooth and as the lay of the strands are very fine there is no secondary bends and the fatigue resistance nature is superior compared to super topes of the same construction. (See Fig. 5)

However, for example, in the case of a small sheave, around D/d, such as tension test use sheave, the fatigue resistance nature drops and the difference with the general round wire strand ropes practically disappears.

⁽c)Superior wear resistance nature

As the surface of the strand is smooth, the wear due to the ropes coming into contact with each other, such as rubbing with the drum, with the sheave, or the roller, is small. (d)Shape crumbling is law

As the strands are finely stranded the surface is smooth. Therefore, the rope winds smoothly around the drum, and the roller, and there is practically no crumbling of the shape.

(e)Drum, sheave, roller damage is low

As the surface of the rope is smooth, it winds smoothly around the drum, the sheave and the roller and the wear and tear of the rope is kept down to a minimum.

(Note)

- 1. The flexibility is somewhat low compared to general super ropes of the same construction but this does not hamper its ease of handling.
- 2. It can be used easily (by attaching and adjusting the ends) the same as the hitherto super ropes.

Construct	ion symbol	Main uses
Tough-Rope	6×P·7	Life use, forestry industry ropeway use, inclined shaft winch use, shaft digging guide rope use, cable crane main rope use
	6×P·Fi(29)	Ropeway stay rope use, general crane use
	IWRC 6×P⋅Fi(29)	General crane use, heavy equipment use
Tough Super Depa	6×P·WS(31)	General crane use, fisheries industry trawler use
Tough-Super-Rope	IWRC 6×P·WS(31)	General crane use, heavy equipment use
	6×P·WS(36)	General crane use, ropeway stay rope use
	IWRC 6×P·WS(36)	General crane use, ropeway tug rope

Main Types and Uses

(Note) Tough-Rope is the product name of the Tough-Super-Rope used for trawlers of the fisheries industry.

$6 \times P \cdot 7$ Construction $6 \times P \cdot (1 + 6)$

			Breakin	g force	
Rope diameter	Outer wire	Sectional area	Lang		(Reference) Rough calculation
alamotor	diameter	urou	Bright • G		Unit mass
mm	mm	mm ²	Grade A	Grade B	kg/m
			kN	kN	
12 12.5 14 16 18	1.33 1.39 1.56 1.78 2.00	68.2 74.0 92.8 121 153	103 112 141 184 233	112 122 153 200 253	0.592 0.643 0.806 1.05 1.33
20 22 22.4 24 25	2.20 2.44 2.48 2.66 2.78	189 229 238 273 296	287 347 360 413 449	312 378 392 450 488	1.65 1.99 2.06 2.37 2.57
26 28 30 31.5 32	2.86 3.12 3.30 3.50 3.55	320 371 426 470 485	485 563 646 712 735	528 612 703 775 800	2.78 3.22 3.70 4.08 4.21
33.5 34 35.5 36 37.5	3.70 3.75 3.93 4.00 4.16	531 547 597 614 666	805 830 904 930 1010	876 903 984 1010 1100	4.62 4.75 5.18 5.33 5.78
38	4.22	684	1040	1130	5.94

$6 \times P \cdot WS$ (31) Construction $6 \times P \cdot WS [1 + 6 + (6 + 6) + 12]$

	0.1	0 4 1	Breakin	•	
Rope diameter	Outer wire	Sectional area	Ordinary lay		(Reference) Rough calculation
	diameter		Bright • Galvanized	Bright	. Unit mass
mm	mm	mm ²	Grade B kN	Grade T kN	kg/m
10	0.65	46.5	69.7	75.5	0.424
12	0.79	66.9	100	109	0.611
14	0.92	91.1	137	148	0.831
16	1.05	119	178	193	1.09
18	1.17	151	226	245	1.37
20	1.30	186	279	302	1.70
22	1.43	225	337	366	2.05
22.4	1.45	233	350	379	2.13
24	1.56	268	402	435	2.44
25	1.63	290	436	472	2.65
26	1.68	314	471	511	2.87
28	1.83	364	547	592	3.33
30	1.94	418	627	680	3.82
31.5	2.06	461	692	749	4.21
32	2.08	476	714	773	4.34
33.5	2.17	522	782	848	4.76
34	2.20	537	806	873	4.90
35.5	2.30	586	879	952	5.35
36	2.34	602	904	979	5.50
37.5	2.44	653	980	1060	5.97
38	2.48	671	1010	1090	6.13
40	2.58	744	1120	1210	6.79
42.5	2.74	839	1260	1360	7.66
44	2.86	900	1350	1460	8.21
45	2.95	941	1410	1530	8.59
46 47.5 48 50 52	3.00 3.07 3.12 3.25 3.40	983 1050 1070 1160 1260	1480 1570 1610 1740 1890	1600 1700 1740 —	8.98 9.57 9.77 10.6 11.5
53	3.45	1310	1960		11.9
54	3.50	1360	2030		12.4
56	3.65	1460	2190		13.3

(Remarks) 1. The diameter of a round rope with the same construction is used as a reference for the upper layer strand.

2. Dash (---) marks represent those which can be made on request.

IWRC $6 \times P \cdot WS$ (31) Construction $7 \times 7 + 6 \times P \cdot WS [1 + 6 + (6 + 6) + 12]$

-			Breakin	g force	
Rope diameter	Outer wire	Sectional area	Ordinary lay		(Reference) Rough calculation
	diameter		Bright • Galvanized	Bright	Unit mass
mm	mm	mm ²	Grade B	Grade T	kg/m
			kN	kN	
10 12 14 16 18	0.65 0.79 0.92 1.05 1.17	53.5 77.0 105 137 173	77.4 111 152 198 251	83.8 121 164 215 271	0.465 0.669 0.911 1.19 1.51
20 22 22.4 24 25	1.30 1.43 1.45 1.56 1.63	214 259 268 308 334	309 374 388 446 484	335 406 420 483 524	1.86 2.25 2.33 2.68 2.91
26 28 30 31.5 32	1.68 1.83 1.94 2.06 2.08	362 419 482 531 548	523 607 696 768 792	566 657 754 831 858	3.14 3.64 4.18 4.61 4.76
33.5 34 35.5 36 37.5	2.17 2.20 2.30 2.34 2.44	600 618 674 693 752	868 894 975 1000 1090	940 969 1060 1090 1180	5.22 5.37 5.86 6.03 6.54
38 40 42.5 44 45	2.48 2.58 2.74 2.86 2.95	773 856 966 1040 1080	1120 1240 1400 1500 1570	1210 1340 1510 1620 1700	6.71 7.44 8.40 9.00 9.41
46 47.5 48 50 52	3.00 3.07 3.12 3.25 3.40	1130 1210 1230 1340 1450	1640 1750 1780 1930 2090	1770 1890 1930 —	9.84 10.5 10.7 11.6 12.6
53 54 56	3.45 3.50 3.65	1500 1560 1680	2170 2260 2430	 	13.1 13.6 14.6

(Remarks) 1. The diameter of a round rope with the same construction is used as a reference for the upper layer strand.

2. Dash (---) marks represent those which can be made on request.

$6 \times P \cdot WS$ (36) Construction $6 \times P \cdot WS [1 + 7 + (7 + 7) + 14]$

_	_		Breaking	g force	
Rope diameter	Outer wire	Sectional area	Ordinary lay	• Lang's lay	(Reference) Rough calculation
ulameter	diameter	aica	Bright • Galvanized	Bright	Unit mass
mm	mm	mm ²	Grade B	Grade T	kg/m
			kN	kN	5,
20	1.14	186	279	302	1.70
22	1.26	225	337	366	2.05
22.4	1.28	233	350	379	2.13
24	1.37	268	402	435	2.44
25	1.43	290	436	472	2.65
26	1.47	314	471	511	2.87
28	1.60	364	547	592	3.33
30	1.70	418	627	680	3.82
31.5	1.80	461	692	749	4.21
32	1.83	476	714	773	4.34
33.5	1.91	522	782	848	4.76
34	1.94	537	806	873	4.90
35.5	2.03	586	879	952	5.35
36	2.06	602	904	979	5.50
37.5	2.14	653	980	1060	5.97
38	2.17	671	1010	1090	6.13
40	2.27	744	1120	1210	6.79
42.5	2.40	839	1260	1360	7.66
44	2.51	900	1350	1460	8.21
45	2.58	941	1410	1530	8.59
46	2.62	983	1480	1600	8.98
47.5	2.70	1050	1570	1700	9.57
48	2.74	1070	1610	1740	9.77
50	2.86	1160	1740	1890	10.6
52	3.00	1260	1890	2040	11.5
53	3.03	1310	1960	2120	11.9
54	3.07	1360	2030	2200	12.4
56	3.20	1460	2190	_	13.3
58	3.30	1560	2350	_	14.3
60	3.45	1670	2510	_	15.3

(Remarks) 1. The diameter of a round rope with the same construction is used as a reference for the upper layer strand.

2. Dash (---) marks represent those which can be made on request.

IWRC $6 \times P \cdot WS$ (36) Construction $7 \times 7 + 6 \times P \cdot WS [1 + 7 + (7 + 7) + 14]$

David	Base Outer Sectional Breaking force					
Rope diameter	Outer wire	Sectional area	Ordinary lay	0 1	(Reference) Rough calculation	
	diameter		Bright • Galvanized	Bright	Unit mass	
mm	mm	mm ²	Grade B	Grade T	kg/m	
			kN	kN		
20 22 22.4 24 25	1.14 1.26 1.28 1.37 1.43	214 259 268 308 334	309 374 388 446 484	335 406 420 483 524	1.86 2.25 2.33 2.68 2.91	
26 28 30 31.5 32	1.47 1.60 1.70 1.80 1.83	362 419 482 531 548	523 607 696 768 792	566 657 754 831 858	3.14 3.64 4.18 4.61 4.76	
33.5 34 35.5 36 37.5	1.91 1.94 2.03 2.06 2.14	600 618 674 693 752	868 894 975 1000 1090	940 969 1060 1090 1180	5.22 5.37 5.86 6.03 6.54	
38 40 42.5 44 45	2.17 2.27 2.40 2.51 2.58	773 856 966 1040 1080	1120 1240 1400 1500 1570	1210 1340 1510 1620 1700	6.71 7.44 8.40 9.00 9.41	
46 47.5 48 50 52	2.62 2.70 2.74 2.86 3.00	1130 1210 1230 1340 1450	1640 1750 1780 1930 2090	1770 1890 1930 2090 2270	9.84 10.5 10.7 11.6 12.6	
53 54 56 58 60	3.03 3.07 3.20 3.30 3.45	1500 1560 1680 1800 1930	2170 2260 2430 2600 2780	2350 2440 — —	13.1 13.6 14.6 15.6 16.7	

(Remarks) 1. The diameter of a round rope with the same construction is used as a reference for the upper layer strand.

2. Dash (—) marks represent those which can be made on request.

5 Elevator Rope

The elevator ropes are being used not only in Japan but also in many buildings overseas and are receiving a high evaluation.

Recent orders for this company's elevator ropes, in Japan, include the Landmark Tower (290 meters high with 70 stories above ground level and ultrahigh speed elevators that travel 750 meters in one minute) and the Tokyo Metropolitan Government Building (243 meters high with 48 stories above ground level and with a total of 83 high speed elevators).

Overseas, our products are being used for the elevators of Sky Central in China, Suntec city in Singapore and the T & C Tower in Taiwan. All of these buildings are high rise buildings and all use high speed elevators. The safety demanded by the even taller buildings and even higher speed elevators is firmly supported by the elevator ropes of this company. Tokyo Rope Mfg. Co., Ltd. with its expertise in elevators of many prominent modern buildings is ready to meet your requirements for elevator ropes.

1 High reliability

The products made through the concentration of long years of experience and superior technology in rope manufacturing, as well as up-to-date facilities are being used for numerous elevators and being received with high reliability and trust.

⁽²⁾ High quality

High quality and stability are maintained through the establishment of internal standards and technical levels, as well as the carrying out of advanced quality and process control.

3Active research

The professional and superior research staff are actively engaged in improving the quality of the products through research and study of product characteristics and the results of their study are being reflected in the elevator ropes turned out by this company.

8 × S (19) (JIS) Construction 8 × S (1 + 9 + 9)

Rope	Outer	Sectional	Breaking force Ordinary lay				(Reference)
diameter	wire	area		Ordina	iry lay		- Rough calculation
didifictor	diameter	urou	Bright • G	alvanized	Bri	ght	Unit mass
mm	mm	mm ²	Grade E	Grade A	Grade B	Grade T	kg/m
			kN	kN	kN	kN	
8	0.53	23.4	26.0	30.8	32.8	34.5	0.220
10	0.66	36.5	40.6	48.1	51.3	53.9	0.343
11.2	0.74	45.8	51.0	60.3	64.3	67.6	0.430
12	0.80	52.6	58.5	69.2	73.8	77.7	0.494
12.5	0.83	57.0	63.5	75.1	80.1	84.3	0.536
14	0.93	71.6	79.6	94.3	100	106	0.672
16	1.06	93.5	104	123	131	138	0.878
18	1.19	118	132	156	166	175	1.11
20	1.32	146	162	192	205	216	1.37
22.4	1.47	183	204	241	257	271	1.72
25	1.65	228	254	301	320	337	2.14

8 × W (19) (JIS) Construction 8 × W [1+6+(6+6)]

				Breakin	g force		
Rope diameter	Outer wire			Ordina	ıry lay		(Reference) Rough calculation
ulameter	diameter	area	Bright • G	alvanized	Bri	ght	Unit mass
mm	mm	mm ²	Grade E	Grade A	Grade B	Grade T	kq/m
			kN	kN	kN	kN	3,
8	0.48	23.4	26.0	30.8	32.8	34.5	0.220
10 11.2	0.61	36.5 45.8	40.6 51.0	48.1 60.3	51.3 64.3	53.9 67.6	0.343 0.430
12	0.00	52.6	58.5	69.2	73.8	77.7	0.494
12.5	0.76	57.0	63.5	75.1	80.1	84.3	0.536
14	0.86	71.6	79.6	94.3	100	106	0.672
16	0.97	93.5	104	123	131	138	0.878
18	1.09	118	132	156	166	175	1.11
20 22.4	1.20 1.35	146 183	162 204	192 241	205 257	216 271	1.37 1.72
22.4	1.35	165	204	241	257	2/1	1.72
25	1.52	228	254	301	320	337	2.14

(Remarks) 1. The figures shown in bold in this chart denote JIS values.

8 × Fi (25) (JIS) Construction 8 × Fi [1 + 6 + (6) + 12]

-	0.1	Castianal		Breakin	g force		(Reference)	
Rope diameter	Outer wire	Sectional		Ordinary lay				
ulameter	diameter	area	Bright • G	alvanized	Br	ight	 Rough calculation Unit mass 	
mm	mm	mm ²	Grade E	Grade A	Grade B	Grade T	kg/m	
			kN	kN	kN	kN	Kg/11	
8	0.42	23.4	26.0	30.8	32.8	34.5	0.220	
10	0.53	36.5	40.6	48.1	51.3	53.9	0.343	
11.2	0.60	45.8	51.0	60.3	64.3	67.6	0.430	
12	0.64	52.6	58.5	69.2	73.8	77.7	0.494	
12.5	0.67	57.0	63.5	75.1	80.1	84.3	0.536	
14	0.75	71.6	79.6	94.3	100	106	0.672	
16	0.86	93.5	104	123	131	138	0.878	
18	0.96	118	132	156	166	175	1.11	
20	1.06	146	162	192	205	216	1.37	
22.4	1.19	183	204	241	257	271	1.72	
25	1.33	228	254	301	320	337	2.14	

8 × S (19) (ISO 4344) Construction 8 × S (1 + 9 + 9)

 $8 \times W$ (19) (ISO 4344) Construction $8 \times W$ [1 + 6 + (6 + 6)]

8 × Fi (25) (ISO 4344) Construction 8 × Fi [1 + 6 + (6) + 12]

Nominal		eaking force (k	N)			Unit mass		
diameter		Dual 1	tensile			Single tensile		Unit mass
mm	Rope grade 1180/1770	Rope grade 1320/1620	Rope grade 1370/1770	Rope grade 1570/1770	Rope grade 1570	Rope grade 1620	Rope grade 1770	kg/m
8	25.7	26.5	28.1	30.8	29.4	30.4	33.2	0.218
9.5	36.2	37.3	39.7	43.6	41.5	42.8	46.8	0.307
10	40.1	41.3	44.0	48.1	46.0	47.5	51.9	0.340
11	48.6	50.0	53.2	58.1	55.7	57.4	62.8	0.411
12	57.8	59.5	63.3	69.2	66.2	68.4	74.7	0.490
12.7	64.7	66.6	70.9	77.5	74.2	76.6	83.6	0.548
13	67.8	69.8	74.3	81.2	77.7	80.2	87.6	0.575
14	78.7	81.0	86.1	94.2	90.2	93.0	102	0.666
16	103	106	113	123	118	122	133	0.870
18	130	134	142	156	149	154	168	1.10
19	145	149	159	173	166	171	187	1.23
20	161	165	176	192	184	190	207	1.36
22	194	200	213	233	223	230	251	1.65

IWRC $8 \times Fi$ (25) Construction $7 \times 7 + Resin + 8 \times Fi$ [1 + 6 + (6) + 12]

Rope	Outer	Sectional			(Reference)	
diameter	wire diameter	area	Bright • G	Ordinary lay	Bright	- Rough calculation Unit mass
mm	mm	mm ²	Grade E	Grade A	Grade B	kg/m
			kN	kN	kN	Kg/11
8 10 11.2 12 12.5	0.42 0.53 0.60 0.64 0.67	29.0 45.3 56.8 65.2 70.8	33.6 52.5 65.9 75.6 82.0	39.6 61.8 77.5 89.0 96.6	42.2 66.0 82.8 95.0 103	0.272 0.426 0.534 0.613 0.665
14 16 18 20 22.4	0.75 0.86 0.96 1.06 1.19	88.8 116 147 181 227	103 134 170 210 263	121 158 200 247 310	129 169 214 264 331	0.834 1.09 1.38 1.70 2.14
25	1.33	283	328	386	413	2.66

8 × P · S (19) (JIS) Construction 8 × P · S [1 + 9 + 9]

8 × P · Fi (25) (JIS) Construction 8 × P · Fi [1 + 6 + (6) + 12]

	_				Breaking force		
	Rope diameter	Outer wire	Sectional area		Ordinary lay	D. L.	(Reference) Rough calculation
		diameter		Bright • G		Bright	Unit mass
	mm	mm	mm ²	Grade E	Grade A	Grade B	kg/m
8×P∙S (19) (JIS)	8 10 11.2 12.5 14 16 18 20 22.4 25	0.53 0.66 0.74 0.80 0.83 0.93 1.06 1.19 1.32 1.47 1.65	26.4 41.3 51.8 59.5 64.5 81.0 106 134 165 207 258	kN 28.6 44.7 56.0 64.3 69.8 87.5 114 145 179 224 279	kN 33.8 52.9 66.3 76.1 82.6 104 135 171 211 265 330	kN 36.1 56.4 70.7 81.2 88.1 110 144 183 225 283 352	0.240 0.374 0.470 0.539 0.585 0.734 0.958 1.21 1.50 1.88 2.34
8×P∙Fi(25) (JIS)	8 10 11.2 12.5 14 16 18 20 22.4 25	0.42 0.53 0.60 0.64 0.67 0.75 0.86 0.96 1.06 1.19 1.33	26.4 41.3 51.8 59.5 64.5 81.0 106 134 165 207 258	28.6 44.7 56.0 64.3 69.8 87.5 114 145 179 224 279	33.8 52.9 66.3 76.1 82.6 104 135 171 211 265 330	36.1 56.4 70.7 81.2 88.1 110 144 183 225 283 352	0.240 0.374 0.470 0.539 0.585 0.734 0.958 1.21 1.50 1.88 2.34

$6 \times S$ (19) (JIS) Construction $6 \times S$ (1 + 9 + 9)

Rope	Outer	Sectional			(Reference)	
diameter	wire	area		Ordinary lay		Rough calculation
didifictor	diameter	urou			Unit mass	
mm	mm	mm ²	Grade E	Grade A	Grade B	kg/m
			kN	kN	kN	
6	0.48	14.2	16.1	19.6	20.9	0.139
6.3	0.50	15.7	17.8	21.6	23.0	0.153
8	0.63	25.2	28.6	34.9	37.2	0.247
9	0.72	31.9	36.2	44.1	47.0	0.312
10	0.80	39.4	44.7	54.5	58.1	0.386
11.2 12 12.5 14 16	0.89 0.96 1.00 1.12 1.28	49.5 56.8 61.6 77.3 101	56.1 64.4 69.9 87.7 115	68.3 78.4 85.1 107 139	72.8 83.6 90.7 114 149	0.484 0.556 0.603 0.756 0.988
18 20 22.4 25	1.43 1.58 1.78 2.00	128 158 198 247	145 179 224 280	176 218 273 340	188 232 291 363	1.25 1.54 1.94 2.41

$6 \times W$ (19) (JIS) Construction $6 \times W [1 + 6 + (6 + 6)]$

				Breaking force		
Rope diameter	Outer wire	Sectional area		Ordinary lay		(Reference) Rough calculation
uldifietei	diameter	died		Bright • Galvanized		Unit mass
mm	mm	mm ²	Grade E	Grade A	Grade B	kg/m
			kN	kN	kN	
6	0.45	14.2	16.1	19.6	20.9	0.139
6.3	0.47	15.7	17.8	21.6	23.0	0.153
8	0.59	25.2	28.6	34.9	37.2	0.247
9	0.67	31.9	36.2	44.1	47.0	0.312
10	0.74	39.4	44.7	54.5	58.1	0.386
11.2	0.83	49.5	56.1	68.3	72.8	0.484
12	0.89	56.8	64.4	78.4	83.6	0.556
12.5	0.93	61.6	69.9	85.1	90.7	0.603
14	1.05	77.3	87.7	107	114	0.756
16	1.19	101	115	139	149	0.988
18	1.33	128	145	176	188	1.25
20	1.47	158	179	218	232	1.54
22.4	1.65	198	224	273	291	1.94
25	1.86	247	280	340	363	2.41

$6 \times Fi$ (25) (JIS) Construction $6 \times Fi$ [1 + 6 + (6) + 12]

				Breaking force		(Reference)	
Rope diameter	Outer wire	Sectional area		Ordinary lay			
alamotor	diameter	urou		Bright • Galvanized		Rough calculation Unit mass	
mm	mm	mm ²	Grade E	Grade A	Grade B	kg/m	
			kN	kN	kN		
6 6.3 8 9	0.39 0.41 0.51 0.58	14.2 15.7 25.2 31.9	16.1 17.8 28.6 36.2	19.6 21.6 34.9 44.1	20.9 23.0 37.2 47.0	0.139 0.153 0.247 0.312	
10	0.64	39.4	44.7	54.5	58.1	0.386	
11.2 12 12.5 14 16	0.72 0.77 0.81 0.90 1.03	49.5 56.8 61.6 77.3 101	56.1 64.4 69.9 87.7 115	68.3 78.4 85.1 107 139	72.8 83.6 90.7 114 149	0.484 0.556 0.603 0.756 0.988	
18 20 22.4 25	1.15 1.28 1.43 1.60	128 158 198 247	145 179 224 280	176 218 273 340	188 232 291 363	1.25 1.54 1.94 2.41	

6 × S (19) (ISO 4344) Construction 6 × S (1 + 9 + 9)

 $6 \times W$ (19) (ISO 4344) Construction $6 \times W$ [1 + 6 + (6 + 6)]

 $6 \times Fi$ (25) (ISO 4344) Construction $6 \times Fi$ [1 + 6 + (6) + 12]

Breaking force (kN)						Unit mass	
	Dual t	ensile			Single tensile		Onic mass
Rope grade	Rope grade	Rope grade	Rope grade	Rope grade	Rope grade	Rope grade	kg/m
1180/1770	1320/1620	1370/1770	1570/1770	1570	1620	1770	
16.3	16.8	17.8	19.5	18.7	19.2	21.0	0.129
28.9	29.8	31.7	34.6	33.2	34.2	37.4	0.230
40.8	42.0	44.7	48.8	46.8	48.2	52.7	0.324
45.2	46.5	49.5	54.1	51.8	53.5	58.4	0.359
54.7	56.3	59.9	65.5	62.7	64.7	70.7	0.434
65.1	67.0	71.3	77.9	74.6	77.0	84.1	0.517
72.9	75.0	79.8	87.3	83.6	86.2	94.2	0.579
76.4	78.6	83.7	91.5	87.6	90.3	98.7	0.607
88.6	91.2	97.0	106	102	105	114	0.704
116	119	127	139	133	137	150	0.919
146	151	160	175	168	173	189	1.16
163	168	179	195	187	193	211	1.30
181	186	198	216	207	214	234	1.44
219	225	240	262	251	259	283	1.74
	1180/1770 16.3 28.9 40.8 45.2 54.7 65.1 72.9 76.4 88.6 116 146 163 181	Rope grade 1180/1770 Rope grade 1320/1620 16.3 16.8 28.9 29.8 40.8 42.0 45.2 46.5 54.7 56.3 65.1 67.0 72.9 75.0 76.4 78.6 88.6 91.2 116 119 146 151 163 168 181 186	Dual tensile Rope grade 1180/1770 Rope grade 1320/1620 Rope grade 1370/1770 16.3 16.8 17.8 28.9 29.8 31.7 40.8 42.0 44.7 45.2 46.5 49.5 54.7 56.3 59.9 65.1 67.0 71.3 72.9 75.0 79.8 76.4 78.6 83.7 88.6 91.2 97.0 116 119 127 146 151 160 163 168 179 181 186 198	Dual tensile Rope grade 1180/1770 Rope grade 1320/1620 Rope grade 1370/1770 Rope grade 1570/1770 16.3 16.8 17.8 19.5 28.9 29.8 31.7 34.6 40.8 42.0 44.7 48.8 45.2 46.5 49.5 54.1 54.7 56.3 59.9 65.5 65.1 67.0 71.3 77.9 72.9 75.0 79.8 87.3 76.4 78.6 83.7 91.5 88.6 91.2 97.0 106 116 119 127 139 146 151 160 175 163 168 179 195 181 186 198 216	Dual tensile Rope grade Rope	Dual tensile Single tensile Rope grade 1180/1770 Rope grade 1320/1620 Rope grade 1370/1770 Rope grade 1570/1770 Rope grade 1570 Rope grade 1620 16.3 16.8 17.8 19.5 18.7 19.2 28.9 29.8 31.7 34.6 33.2 34.2 40.8 42.0 44.7 48.8 46.8 48.2 45.2 46.5 49.5 54.1 51.8 53.5 54.7 56.3 59.9 65.5 62.7 64.7 65.1 67.0 71.3 77.9 74.6 77.0 72.9 75.0 79.8 87.3 83.6 86.2 76.4 78.6 83.7 91.5 87.6 90.3 88.6 91.2 97.0 106 102 105 116 119 127 139 133 137 146 151 160 175 168 173 163 168 179	Dual tensile Single tensile Rope grade 1180/1770 Rope grade 1320/1620 Rope grade 1370/1770 Rope grade 1570/1770 Rope grade 1570 Rope grade 1570 Rope grade 1620 Rope grade 1770 16.3 16.8 17.8 19.5 18.7 19.2 21.0 28.9 29.8 31.7 34.6 33.2 34.2 37.4 40.8 42.0 44.7 48.8 46.8 48.2 52.7 45.2 46.5 49.5 54.1 51.8 53.5 58.4 54.7 56.3 59.9 65.5 62.7 64.7 70.7 65.1 67.0 71.3 77.9 74.6 77.0 84.1 72.9 75.0 79.8 87.3 83.6 86.2 94.2 76.4 78.6 83.7 91.5 87.6 90.3 98.7 116 119 127 139 133 137 150 146 151 160 175 168 </td

6 Rotation-Resistant Rope

As a tension works on the rope, a torque arises as the lay of the rope tries to twist in the return direction. To solve the problem of the hoisted load from turning around in the air due to using only one rope, the Z lay rope and the S lay rope are being used in parallel for hauling equipment which of recent years require a larger lifting capability.

However, the hoisting devices have become more compact and smaller in size and so the demand has arisen for a product that will make it possible to carry out the job with only one rope. To meet this demand, this company has developed a rope with a small torque. This rope is receiving high evaluation and is being widely used.

The main non-rotating ropes made by this company are as follows.

Mono-Rope

This is a rope in which the number of strands used is three to four and the layer core diameter is made smaller than that of the general six strand rope and also where the rotating torque of the rope has been lessened through adjusting the lay pitch. In most cases, the cross sections of the strands are in a shell shape so that the surface of the rope will be smooth.

Multi-Layer Strand Rope

Strands whose cross sections are round in shape are positioned so that two or more layers face in opposite directions to offset the torque between each layer. There are the following two types.

(1)Hercules Rope

Two layers of round strands are stranded.

(2)Nuflex Rope

Three or more layers of round strands are stranded and thus the breaking force is higher than that of the Hercules rope.

As a rope with a high breaking force, there is the Tough Super Nuflex Rope, the Tough Nuflex Rope in which heterogenous wire strands are stranded.

Long-Super-Rope

Through adjusting the lay pitch of the rope core super rope strand and the rope, the rotating torque of the rope has been lessened.

Therefore, this rope is used for medium height hoisting cranes.

This rope has the same breaking force as the super rope.

Rota-Less Rope

Rota-Less Rope is the fittest for Rough-Terrain Cranes. The core of this rope is consisted of the independent strand which lay direction is opposite to the lay direction of the rope.

Therefore the torque of the Rota-Less Rope is smaller than that of same construction rope with IWRC.

The fatigue Resistance and flexibility of the Rota-Less Rope are almost equal to the same construction rope with IWRC.

(Reference)

Definition of Non-Rotating

The definition of the non-rotating nature up to now was not clear but the Japan Steel Rope Industrial Circle has clarified the definition as follows. (a)Definition according to the torque angle

When a tension of 20% of the standard breaking force is applied to the bottom end of a dangling rope whose other end is fixed, or to the free end of a rope whose other end is fixed horizontally to a tension tester, the torque angle (θ) is less than 40° of the span which is 10 times the diameter of the rope. (Note) General ropes are $\theta = 120 \sim 200^{\circ}$ (b)Definition according to the torque

When a weight (W) is applied to the free end of a rope fixed horizontally to a tension tester, the torque (T) arising in the rope is measured. The calculation according to the following formula is for torque coefficient (K) which is less than 30×10^{-3} .

 $K = \frac{T}{W \times D} \times 10^3$

Here: W = The tension applied to the rope (N)

T =Torque due to the weight W

(N · m)

D = Rope diameter (mm)

(Note) General ropes are $K = 90 \sim 110 \times 10^{-3}$

The smaller the torque coefficient K value the less the rope will tend to twist. The K value by the rope construction is shown in Table 1.

Cautions When Using

Of the non-rotating ropes, attention should be paid to the following points, particularly as concerns the multi-layer strand ropes, the Hercules rope and the Nuflex rope.

If care is not taken, the shape of the rope will change beyond repair (bird-caging, etc.) and in some extreme cases, the rope will develop kinks and will not be able to withstand the use.

(a) Care should be taken at the time of pulling the rope out of the wooden frame and when attaching to the equipment, or device, so that the lay of the rope will not twist or become loose.

(b)The end of the rope should always be fixed so that the rope will not turn freely, after attaching. (However, this will not apply in the case of unifilar suspension)

(c)Should the rope become harmed due to the groove of the sheave being too small, or the groove being off center, or the turning become poor, the pitch will change and the rope may lose its shape.

Care should be taken so that the rope does not become harmed or damaged.

(d)When cutting the rope to the required length, a seizing should first be applied to both sides of the place cut.

Rope o	onstruction	Torque Coef.	Remarks
Classification	Examples of construction	K(×10 ⁻³)	nemarks
3-strand Mono-Rope	3×F(40)	5~15	
4-strand Mono-Rope	4×F(40)	10~20	Non-rotating ropes
Nuflex, Hercules Rope	P·S(19)+39×P·7 19×7	10~20	
Rota-Less Rope	SeS(48)+6×WS(31)	40~60	Low-rotating ropes
Long Super Rope	IWRC6×WS(36)	50~70	Low-rotating topes
Super Rope	IWRC6×WS(36)	80~100	

Table 1 Torque co	efficient (K) by	rope c	construction
-------------------	------------------	--------	--------------

Mono-Rope EP $3 \times F$ (40) Construction $3 \times F[a+8+(8+8)+16]$

_	_		Breakin	g force	
Rope diameter	Outer wire	Sectional area	Ordina	, ,	(Reference) Rough calculation
	diameter		Bright • Galvanized	Bright	Unit mass
mm	mm	mm ²	Grade B	Grade T	kg/m
			kN	kN	
10	0.80	47.0	78.9	85.5	0.436
11.2	0.89	58.9	99.0	107	0.547
12	0.96	67.6	114	123	0.628
12.5	1.00	73.6	123	134	0.681
14	1.12	92.1	155	168	0.855
16	1.28	120	202	219	1.12
18	1.43	152	256	277	1.41
20	1.58	188	316	342	1.74
22	1.75	227	382	414	2.11
22.4	1.78	236	396	429	2.19
24	1.91	271	455	493	2.51
25	2.00	294	493	535	2.73
26	2.06	318	533	578	2.95
28	2.24	368	619	670	3.42
30	2.37	423	710	770	3.92
31.5	2.51	466	783	849	4.33
32	2.55	481	808	876	4.47
33.5	2.66	527	886	960	4.89
34	2.70	543	912	989	5.04
35.5	2.82	592	994	1080	5.50
36	2.86	609	1020	1110	5.65
37.5	3.00	661	1110	1200	6.13
38	3.03	678	1140	1230	6.30
40	3.16	752	1260	—	6.98
42.5	3.35	848	1430	—	7.88

Mono-Rope A $4 \times F$ (30) Construction $4 \times F$ (a + 15 + 15)

_	_		Breakin	g force	
Rope diameter	Outer wire	Sectional area	Ordina	, ,	(Reference) Rough calculation
didifictor	diameter	urou	Bright • Galvanized	Bright	Unit mass
mm	mm	mm ²	Grade B	Grade T	kg/m
			kN	kN	
8	0.57	24.1	36.0	39.0	0.221
9	0.65	30.4	45.5	49.3	0.279
10	0.72	37.6	56.2	60.9	0.345
11.2	0.81	47.2	70.5	76.4	0.432
12	0.87	54.1	81.0	87.7	0.496
12.5	0.90	58.7	87.9	95.2	0.539
14	1.02	73.7	110	119	0.676
16	1.15	96.2	144	156	0.882
18	1.30	122	182	197	1.12
20	1.43	150	225	244	1.38
22	1.58	182	272	295	1.67
22.4	1.60	189	282	306	1.73
24	1.73	217	324	351	1.99
25	1.80	235	351	381	2.15
26	1.86	254	380	412	2.33
28	2.03	295	441	478	2.70
30	2.14	338	506	548	3.10
31.5	2.27	373	558	604	3.42
32	2.30	385	576	624	3.53
33.5	2.40	422	631	684	3.87
34	2.44	435	650	704	3.98
35.5	2.55	474	709	768	4.34
36	2.58	487	729	789	4.47
37.5	2.70	529	791	857	4.85
38	2.74	543	812	880	4.98
40	2.86	601	900	975	5.52
42.5	3.03	679	1020	1100	6.23
44	3.16	728	1090	—	6.67
45	3.25	761	1140	—	6.98

Mono-Rope SP $4 \times F$ (40) Construction $4 \times F[a+8+(8+8)+16]$

-			Breaking force			
Rope diameter	Outer wire	Sectional area	Ordina	, ,	(Reference) Rough calculation	
	diameter		Bright • Galvanized	Bright	Unit mass	
mm	mm	mm ²	Grade B kN	Grade T kN	kg/m	
8	0.53	29.0	43.0	46.5	0.258	
9	0.61	36.7	54.4	58.9	0.327	
10	0.67	45.3	67.1	72.7	0.403	
11.2	0.75	56.8	84.2	91.2	0.506	
12	0.81	65.2	96.7	105	0.581	
12.5	0.84	70.8	105	114	0.630	
14	0.95	88.7	132	143	0.790	
16	1.08	116	172	186	1.03	
18	1.20	147	218	236	1.31	
20	1.33	181	269	291	1.61	
22	1.47	219	325	352	1.95	
22.4	1.50	227	337	365	2.02	
24	1.60	261	387	419	2.32	
25	1.68	283	420	455	2.52	
26	1.73	306	454	492	2.73	
28	1.88	355	526	570	3.16	
30	2.00	408	604	655	3.63	
31.5	2.11	449	666	722	4.00	
32	2.14	464	687	745	4.13	
33.5	2.24	508	753	816	4.52	
34	2.27	523	776	841	4.66	
35.5	2.37	571	846	917	5.08	
36	2.40	587	870	943	5.23	
37.5	2.51	637	944	1020	5.67	
38	2.55	654	969	1050	5.82	
40	2.66	724	1070	1160	6.45	
42.5	2.82	818	1210	1310	7.28	

Hercules Rope 19 \times 7 (JIS) Construction 7+6 \times 7+12 \times 7

-			Breaking force			
Rope diameter	Outer wire	Sectional area	Ordina		(Reference) Rough calculation	
	diameter		Galvanized	Bright • Galvanized	Unit mass	
mm	mm	mm ²	Grade A	Grade T	kg/m	
			kN	kN		
10 11.2 12 14 16	0.66 0.74 0.80 0.93 1.06	48.1 60.3 69.2 94.2 123	58.8 73.8 84.7 115 151	71.7 89.9 103 140 184	0.425 0.533 0.612 0.833 1.09	
18 20 22 25 28	1.19 1.32 1.45 1.65 1.86	156 192 233 300 377	191 235 285 368 461	232 287 347 448 562	1.38 1.70 2.06 2.66 3.33	

Tough-Nuflex-Rope $P \cdot S (19) + 39 \times P \cdot 7$ Construction $P \cdot \{S (19) + 7 \times P \cdot 7 + [(7 \times P \cdot 7) + (7 \times P \cdot 7)] + 18 \times P \cdot 7\}$

Rope	Outer	Sectional	Breakin	(Reference)	
diameter	wire	area	Ordina	Rough calculation	
ulameter	diameter	aiea	Brig	Unit mass	
mm	mm	mm ²	Grade B	Grade T	kg/m
			kN	kN	
16	0.76	150	207	225	1.29
18	0.86	189	262	284	1.63
20	0.95	234	324	351	2.02
22	1.05	283	392	425	2.44
22.4	1.06	293	406	440	2.53
24	1.14	336	466	505	2.90
25	1.19	365	506	549	3.15
26	1.22	395	547	593	3.41
28	1.33	458	634	688	3.95
30	1.41	526	728	790	4.54
31.5	1.50	579	803	871	5.00
32	1.52	598	828	899	5.16
33.5	1.58	655	908	985	5.66
34	1.60	675	935	1010	5.83
35.5	1.68	736	1020	1110	6.35
36	1.70	757	1050	1140	6.53
37.5	1.78	821	1140	1230	7.09
38	1.80	843	1170	1270	7.28
40	1.88	934	1290	1400	8.06

(Remarks) 1. The diameter of a round rope with the same construction is used as a reference for the outer wire strand.

2. Higher breaking force can be made on request, as required.

Rota-Less Rope IWSC [SeS (39)] $6 \times$ WS (26) Construction SeS (a+9+15+15) + $6 \times$ WS [1+5+(5+5)+10]

_	_		Breakin		
Rope diameter	Outer wire	Sectional area	Ordina		(Reference) - Rough calculation
	diameter		Bright • Galvanized	Bright	Ŭnit mass
mm	mm	mm ²	Grade B	Grade T	kg/m
			kN	kN	
8 9	0.60 0.68	31.6 40.0	42.4 53.6	44.5 56.3	0.275 0.348
10	0.75	49.4	66.2	69.5	0.430
11.2	0.84	61.9	83.0	87.2	0.539
12.5	0.95	77.1	103	109	0.672
14	1.06	96.7	130	136	0.843
16 18	1.20 1.35	126 160	169 214	178 225	1.10 1.39
20	1.50	197	265	225	1.72
22.4	1.68	248	332	349	2.16
25	1.88	309	414	435	2.69
28	2.11	387	519	545	3.37
30 31.5	2.24 2.37	444 490	596 657	626 690	3.87 4.27
33.5	2.51	554	743	780	4.83
35.5	2.66	622	834	876	5.42
37.5	2.82	694	931	978	6.05
40 42.5	3.00 3.16	790 892	1060 1200	1110	6.88 7.77
42.5 45	3.40	1000	1340	_	8.71
47.5	3.55	1110	1490		9.70
50	3.75	1230	1650	<u> </u>	10.8

Rota-Less Rope IWSC [SeS (48)] $6 \times$ WS (31) Construction SeS (a+12+18+18)+ $6 \times$ WS [1+6+(6+6)+12]

	_	_	Breaking	g force	
Rope diameter	Outer wire	Sectional area	Ordina		(Reference) Rough calculation
didifictor	diameter	urou	Bright • Galvanized	Bright	Unit mass
mm	mm	mm ²	Grade B	Grade T	kg/m
			kN	kN	
16 18 20 22.4 25	1.05 1.17 1.30 1.45 1.63	130 164 202 254 316	173 219 271 340 423	182 230 284 357 444	1.13 1.43 1.76 2.21 2.75
28 30 31.5 33.5 35.5	1.83 1.94 2.06 2.17 2.30	397 456 502 568 638	531 609 672 760 853	558 640 706 798 896	3.45 3.96 4.37 4.94 5.55
37.5 40 42.5 45 47.5	2.44 2.58 2.74 2.95 3.07	712 810 914 1030 1140	952 1080 1220 1370 1530	1000 1140 1280 1440 1600	6.19 7.04 7.95 8.91 9.93
50 53 56 60	3.25 3.45 3.65 3.93	1270 1420 1590 1820	1690 1900 2120 2440		11.0 12.4 13.8 15.8

Rota-Less Rope IWSC [SeS (48)] $6 \times$ WS (36) Construction SeS (a+12+18+18)+ $6 \times$ WS [1+7+(7+7)+14]

			Breakin	g force	
Rope diameter	Outer wire	Sectional area	Ordina		(Reference) Rough calculation
	diameter		Bright • Galvanized	Bright	Unit mass
mm	mm	mm ²	Grade B kN	Grade T	kg/m
				kN	
16 18	0.92	130 164	173 219	182 230	1.13 1.43
20	1.14	202	271	284	1.76
22.4	1.28	254	340	357	2.21
25	1.43	316	423	444	2.75
28	1.60	397	531	558	3.45
30 31.5	1.70 1.80	456 502	609 672	640 706	3.96 4.37
33.5	1.80	502	760	708	4.94
35.5	2.03	638	853	896	5.55
37.5	2.14	712	952	1000	6.19
40	2.27	810	1080	1140	7.04
42.5 45	2.40 2.58	914 1030	1220 1370	1280 1440	7.95 8.91
45	2.56	1140	1530	1600	9.93
50 53	2.86 3.03	1270 1420	1690 1900	1780 2000	11.0 12.4
56	3.20	1590	2120		13.8
60	3.45	1820	2440	_	15.8

7 Cable Laid Rope

IWRC $6 \times [IWRC \ 6 \times S \ (19)]$ Construction $7 \times 7 + 6 \times [7 \times 7 + 6 \times S \ (1 + 9 + 9)]$

	Breaking force						
Rope diameter	Outer wire	Sectional area		Ordinary lay			
ulumotor	diameter	urcu		Bright		 Rough calculation Unit mass 	
mm	mm	mm ²	Grade A	Grade B	Grade T	kg/m	
			kN	kN	kN		
40	1.08	636	762	817	872	5.65	
42.5	1.14	717	860	922	985	6.38	
44	1.19	769	922	989	1060	6.84	
45	1.22	804	964	1030	1100	7.15	
46	1.24	840	1010	1080	1150	7.47	
47.5	1.28	896	1070	1150	1230	7.97	
48	1.30	915	1100	1150	1260	8.14	
50	1.35	993	1190	1280	1360	8.83	
52	1.41	1070	1290	1380	1470	9.55	
53	1.43	1120	1340	1430	1530	9.92	
54	1.45	1160	1390	1490	1590	10.3	
56	1.52	1250	1490	1600	1710	11.1	
58	1.56	1340	1600	1720	1830	11.9	
60	1.63	1430	1710	1840	1960	12.7	
62	1.68	1530	1830	1960	2100	13.6	
63	1.70	1580	1890	2030	2160	14.0	
64	1.73	1630	1950	2090	2230	14.5	
67	1.80	1780	2140	2290	2450	15.9	
71	1.91	2000	2400	2570	2750	17.8	
75	2.03	2230	2680	2870	3070	19.9	
80	2.14	2540	3050	3270	3490	22.6	
85	2.30	2870	3440	3690	3940	25.5	
90	2.44	3220	3860	4140	4420	28.6	
95	2.58	3580	4300	4610	4920	31.9	
100	2.70	3970	4760	5110	5450	35.3	

7 × [IWRC 6 × WS (36)] Construction 7 × {7 × 7 + 6 × WS [1 + 7 + (7 + 7) + 14] }

				Breaking force		
Rope diameter	Outer wire	Sectional area		Ordinary lay		(Reference) Rough calculation
ulameter	diameter	aiea		Bright		Unit mass
mm	mm	mm ²	Grade A	Grade B	Grade T	kg/m
			kN	kN	kN	
100 106 112 118 120	1.86 1.97 2.08 2.20 2.24	3920 4400 4910 5450 5640	4560 5120 5710 6340 6560	4970 5580 6230 6920 7160	5240 5880 6570 7290 7540	35.0 39.4 43.9 48.8 50.4
125 130 132 140 150	2.34 2.40 2.48 2.62 2.78	6120 6620 6930 7670 8810	7120 7700 7940 8930 10200	7760 8400 8660 9740 11200	8180 8850 9120 10300} 11800	54.7 59.2 61.0 68.7 78.8
160 170 180 190 200	3.00 3.16 3.35 3.55 3.70	10000 11300 12700 14100 15700	11700 13200 14800 16400 18200	12700 14400 16100 17900 19900	13400 	89.7 101 113 126 140

(Remarks) Dash (---) marks represent those that can be made on request.


8 Locked Coil Rope (for rails)

The locked coil rope was conceived and patented by Bachelor, in 1884. Since then, the construction of this rope has become more and more complex. In Japan, also, the locked coil rope is being widely used as the main rope for cable cranes, passenger ropeways and cargo ropeways and its superiority is highly evaluated.

This company is constantly making efforts to improve its rope making technology and to turn out uniform quality. As a result, the ropes of this company are being widely used because of their superior quality.

The locked coil rope is made up of grades A, B, C, D, F and G. Each of these grades has as its core a round wire multilayer lay rope as the core (referred to as the lower layer rope herein). Heterogenous wire is meshed closely around this core and a special rope grease applied to the inner and the outer layers.

Fig. 6 Exterior view and cross sectional view of the locked coil rope

Characteristics

(a)Low vibration and noise

The surface of the rope is smooth like a rod and so there is little vibration when the conveyor is travelling on the rail rope (stay rope, main rope, axial rope). Therefore, the wear on the conveyor, towers, and the other facilities, in general, is small and as the noise is low, the ride on the passenger ropeway is comfortable.

(b)Superior in its wear resistance

The locked coil rope has an excellent wear resistance and so its life expectancy is extremely long. (c)High strength against bending

A rope that does not bend easily is required when using for axial ropes such as for cable cranes. The locked coil rope uses a Z grade and T grade heterogenous wire, which differs from the round wire, for the outer layer and so is ideal for using for these purposes.

(d)Highly Corrosion resistant

Internal rusting due to rain water over many years cannot be avoided for Hercules ropes and flat type ropes, even though grease may be applied. However, the heterogenous wires of the locked coil rope are closely matched for the locked coil rope and grease is fully applied at the time of manufacture and so rain water and moisture is prevented from entering and there is no fear of internal rusting.

(e)Large breaking force

Compared to other ropes with the same diameter, its breaking force is much greater.

Туре	Construction
A type	An X type heterogenous wire and a round wire are combined alternately around the lower layer rope and so a single layer lay made. This is also called semi-locked coil rope. (Not used in Japan)
B type	A Z type heterogenous wire layer is stranded around the lower layer rope to make a single layer lay.
C type	A T type heterogenous wire layer is stranded around the lower layer rope and after making a single layer lay a Z type heterogenous wire is stranded around this.
D type	A single layer a Z type wire is further placed around the C type rope.
E type	Two layers of T type heterogenous wires are stranded around the lower layer rope and then a further two layers of Z type heterogenous wire placed over this.
F type	A further one layer of Z type heterogenous wire is stranded around the E type rope.
G type	A further one layer of Z type heterogenous wire is stranded around the F type rope.

Type and Construction

Concerning The Superiority of The Locked Coil Rope of This Company

(a)Tradition and superior technology

From the time this company started to deliver 300 meter length B type 38mm diameter ropes to the Hitachi mines, in 1941, to the present this company has produced approximately 25,000 tons of ropes.

During this period, this company led the other companies in taking in hand research on locked coil ropes. Through improving its technology, the quality of the products turned out by this company is, today, leaving the other companies far behind.

Using a 1,000-ton rope tension tester, this company is carrying out tests on the performance of large diameter locked coil ropes.

Based on the data obtained form these tests, further improvements are being made on the quality of the locked coil ropes. Even today, technical research is being carried out without rest.

(b)Ultra-hard alloy dies with a high precision

Of first importance when deciding on the quality of the locked coil rope, is to see that the precision designed heterogenous wires mesh precisely.

As the result of many years of research, this company has succeeded in perfecting the highly accurate electric discharge processing method. Through this method, the wires can be drawn to the designed shape and the die is of an extremely high accuracy.

Based on the manufacturing experience it has gained up to now, exceeding a cumulative 25,000 tons, this company is employing the most ideal heterogenous wire not only from the logical point of view but also from the aspect of actual use.

(c)Special lay wire machine

Perfect quality locked coil ropes can be made only through the use of a specially designed machine, when looked at from its construction.

This company, together with the popularization of the locked coil ropes and the greater use of large size ropes, imported the latest large-size locked coil lay wire machine, from Germany, in 1954.

And, in 1972, to meet the demands for even longer ropes added an up-to-date domestically made machine with a large capacity bobbin window.

(d)Others

This company can also make locked coil ropes with a special zinc coating, on request, to prevent corrosion.

Points to be Observed When Using

This locked coil rope is expensive and also heavy (large mass per unit) and so attention should be paid to the following when using.

(a)Points to be observed when pulling the rope from the spool, or reel (wood or steel frame)

(1)The spool stand should be placed on a level spot where there is good footing.

This is necessary to ensure the safety of the workers and also to prevent the rope from becoming damaged.

(2)The spool stand should be anchored in the reverse direction to that of the pulling direction.

This is necessary to prevent the stand from toppling over.

(3)A brake should be attached to adjust the revolution of the spool.

If the rope is pulled out without applying a brake, the rope will reel out too quickly, thus causing the rope to become fatally damaged. There is also the danger of accident to the user.

(4)Pull the rope out from the bottom side of the spool.

If the rope is pulled out from the top side, a slack may develop in the rope.

(5)The rope being pulled out should be prevented from twisting.

Should the rope turn and the lay of the rope change through twisting, waviness, bending, birdcaging and, in some extreme cases, a kink will develop in the rope and the rope will become unusable.

(6)Do not make small bends in the rope. (When bending, the radius of the curvature should be more than 40 times the diameters of the rope.)

If less than 40 times the diameter, a permanent twist will form in the rope.

(b)Other points to be observed

When cutting the rope to the required length, a seizing should be applied to both sides of the place to be cut.

If no seizing is used, the rope will become loose and it will become difficult to return the rope to its former shape.

B Type Locked Coil Rope for Rails

Deres	Quatianal	Ordinary type		Strong	(Reference)	
Rope diameter mm	Sectional area mm²	Mean tensile strength N/mm²	Breaking force kN	Mean tensile strength N/mm²	Breaking force kN	Rough calculation Unit mass kg/m
20 22 24 26 28	280 339 401 473 546	1450 1450 1460 1460 1430	361 438 522 613 695	1550 1560 1580 1570 1550	385 471 563 660 753	2.38 2.83 3.35 3.96 4.56
30 32 34 36 38	598 680 762 849 941	1510 1500 1520 1510 1510	804 907 1030 1140 1270	1610 1620 1620 1610 1590	854 981 1100 1220 1330	5.03 5.73 6.42 7.15 7.93
40 42 44 46	1040 1140 1250 1360	1470 1480 1480 1510	1360 1500 1650 1820	1570 1590 1590 1590	1450 1610 1770 1920	8.76 9.64 10.5 11.5

C Type Locked Coil Rope for Rails

Dawa	Castianal	Ordinary type		Strong	(Reference)	
Rope diameter mm	Sectional area mm²	Mean tensile strength N/mm²	Breaking force kN	Mean tensile strength N/mm²	Breaking force kN	Rough calculation Unit mass kg/m
34	808	1400	1000	1590	1140	6.81
36	901	1380	1110	1570	1260	7.59
38	993	1390	1230	1580	1390	8.36
40	1100	1400	1360	1590	1540	9.23
42	1200	1400	1500	1600	1710	10.2
44	1320	1410	1650	1610	1870	11.1
46	1430	1430	1820	1610	2050	12.1
48	1560	1430	1960	1620	2220	13.1
50	1680	1450	2150	1630	2400	14.2
52	1810	1450	2300	1640	2600	15.3
54	1940	1450	2470	1640	2790	16.4
56	2110	1440	2680	1600	2960	17.8
58	2270	1440	2870	1590	3170}	19.1
60	2410	1460	3090	1600	3380	20.4
62	2570	1450	3290	1560	3530	21.7
64	2740	1420	3430	1550	3730	23.1
66	2910	1410	3610	1540	3940}	24.5

D Type Locked Coil Rope for Rails

Dente	Sectional	Ordinary type		Strong	(Reference)	
Rope diameter mm	area mm ²	Mean tensile strength N/mm²	Breaking force kN	Mean tensile strength N/mm²	Breaking force kN	Rough calculation Unit mass kg/m
50 52 54 56 58	1750 1890 2020 2180 2340	1390 1380 1390 1390 1390	2150 2300 2470 2670 2870	1460 1430 1440 1460 1430	2260 2400 2560 2790 2950	14.8 16.0 17.1 18.4 19.7
60 62 64 66 68	2500 2660 2830 3000 3190	1400 1400 1390 1400 1390	3080 3290 3470 3710 3920	1430 1460 1450 1450 1430	3160 3420 3610 3820 4020	21.0 22.4 23.8 25.3 26.9
70 72 74 76	3380 3560 3760 3960	1390 1400 1400 1400	4150 4400 4640 4890	1440 1440 1450 1450	4280 4510 4810 5060	28.5 30.0 31.7 33.4

E Type Locked Coil Rope for Rails

Deres	Sectional	Ordinary type		Strong	(Reference)	
Rope diameter mm	area mm ²	Mean tensile strength N/mm²	Breaking force kN	Mean tensile strength N/mm²	Breaking force kN	Rough calculation Unit mass kg/m
78	4260	1340	4980	1440	5330	35.9
80	4480	1340	5210	1430	5580	37.8
82	4680	1330	5420	1430	5830	39.5
84	4910	1320	5660	1410	6040	41.4
86	5140	1310	5890	1400	6280	43.4
88	5370	1320	6160	1390	6510	45.3
90	5600	1310	6370	1390	6810	47.2
92	5840	1330	6780	1400	7140	49.3
94	6100	1300	6920	1410	7470	51.4
96	6360	1290	7180	1400	7770	53.6
98	6620	1290	7480	1410	8110	55.8
100	6870	1300	7700	1410	8420	57.9

F Type Locked Coil Rope for Rails

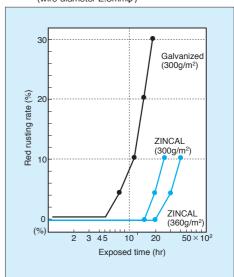
Dura	Sectional Ordinary type		ry type	Strong	(Reference)	
Rope diameter mm	area mm ²	Mean tensile strength N/mm²	Breaking force kN	Mean tensile strength N/mm²	Breaking force kN	Rough calculation Unit mass kg/m
92 94 96 98 100	6000 6250 6500 6770 7040	1320 1290 1280 1280	6890 7040 7310 7580 7860	1360 1370 1370 1370 1370	7140 7470 7770 8110 8420	50.6 52.7 54.8 57.1 59.4

G Type Locked Coil Rope for Rails

David	Sectional	Ordinary type		Strong	(Reference)	
Rope diameter mm	area mm ²	Mean tensile strength N/mm²	Breaking force kN	Mean tensile strength N/mm²	Breaking force kN	Rough calculation Unit mass kg/m
102 104 106 108 110	7390 7680 7970 8290 8590	1270 1270 1270 1270 1270 1250	8120 8450 8800 9140 9280	1350 1350 1340 1340 1340 1340	8690 9010 9340 9670 10000	62.3 64.9 67.2 69.9 72.4
112 114 116 118 120	8890 9200 9520 9840 10140	1240 1240 1240 1240 1240	9580 9900 10200 10600 10900	1330 1330 1330 1330 1330	10300 10700 11100 11400 11800	75.0 77.5 80.3 83.0 85.6

9 ZINCAL Rope

In general, the wires or wire ropes are rather easy to be effected by corrosion owing to their large surface area per a unit weight comparing with other construction steel materials. This nature is unavoidable because of the required technical characteristics upon the wires and wire ropes, therefore when to be used under corrosive environment, a certain effective anti-corrosion measure should be taken.


For the wire high carbon steel products in general, galvanizing has been applied for anticorrosion, however, as for the easier maintenance, the reduction of the working costs, and so on, the more sufisticated plating technique is now-a-days required.

Hereupon, Tokyo Rope has developed a new coating method based on zinc and aluminum, by our qualified surface technology, i. e.,

Zn + 5% A1 + Na Alloy Coating

which creates a remarkable anti-corrosion characteristics, and the wire products manufactured under this new technique is named ZINCAL that is mow introduced into the market.

ZINCAL is recognized as twice or more longer time till getting red rusting by neutral salt spray testing, comparing with galvanized wire of the equal coating mass. Moreover, ZINCAL shows lower increasing rate of the red rusting.

Fig. 7●Salt Result of spray testing (wire diameter 2.3mm¢)

1 TOYO-LOK(Patent No. 233647, Utility Model No. 703649)

Ropes are rarely used as is and the ends are usually processed.

Apart from the conventional splicing, the process-ing methods include TOYO-LOK processing, Single Lock processing and the socket processing with each method having its respective merits.

TOYO-LOK is the product name of a product of this company whose ends have been processed through compression prevention. This company has for many years carried out research and study as concerns processing the ends of ropes. In 1957, a technical agreement was signed with TALURIT of Germany and the patent rights for this product was received. Sales of the product was carried out under the product name TOYO-LOK.

Later, through improvements made in processing technologies, the product was further improved and through strict quality control the product is today receiving high trust and evaluation from many fields.

Characteristics

As the alloy adheres to the strands and to the outer layer wires as though it has been melted on there is no gaps, or openings, in the circumference of the rope. This is a powerful bonding method that prevents the rope from pulling out, even though the rope may break through friction between the alloy and the rope, or between rope and rope. This alloy has the following characteristics.

(a)A high degree of binding power

Maintains more than 95% of the nominal breaking force of the rope and so the rope can be used without anxiety (approved by the Industrial Safety Research Center of the Ministry of Labor).

(b)Accurate mechanical processing

As mechanical processing is carried out, the rope is processed uniformly and the finish measurement is accurate.

(c)High corrosion resistance nature

The special aluminum alloy completely adheres even to the gaps and opening of the wires and so rain water and salt water is kept out and the inside is always like new. However, when used for a long time in sea water the tube may become dissolved and the binding power will drop. In some extreme cases, the rope may pull out.

Please consult this company in such cases.

(d)Prevention of injury

The processed part is covered with a smooth aluminum alloy and so does not injure the hand of the user.

(e)Smart appearance

When used as a stay rope for buildings and structures, the appearance is more stylish than when compared to other processing methods.

Processing Method

An aluminum alloy heterogenous tube is inserted into the connecting part of the rope and compressed from the outside. And, through plastic deformation is adhered to the rope to provide a powerful binding power.

Kinds of Rope slings

Among the TOYO-LOK processed rope slings, there are the following types.

(a)Ordinary rope slings

This is the most general type of rope slings and, as shown in Fig. 1, both ends have an eye part.

Depending on the shape of the eye used, there is the cylindrical type and the streamline type.

(b)Non-torsion rope slings

To prevent the rope slings from turning around when lifting a load, two ropes are used between the processed part, as shown in Fig. 2.

Apart from the two similar type ropes, there is also the S lay and the Z lay ropes which have been made into one.

(c)Eared rope slings (Utility model 503804).

This is shaped as shown in Fig. 3.

(d)Endless rope slings

As shown in Fig. 4, both ends of the ropes overlap each other and processed with TOYO-LOK.

Moreover, the fibre core rope is generally used as the standard item for the various kinds of rope slings, mentioned above. However, rope core (IWRC) ropes and common core (IWSC) ropes can also be made.

Alloy tubes with an inclined end can also be made so that the rope slings can be removed easily after the unloading work is completed.

Your orders are awaited.

Manufacturing Scope

The standard for the scope of manufacturing is as shown in Table 1.

Please consult this company for measurements other than shown here.

Table 1 Sta	andard Man	ufacturing	Scope
-------------	------------	------------	-------

Kinds		Rope	Rope diameters that can be made mm	Minimum manufacturing length	
	Cylindrical	Fibre core	Over 6 and less than 180		
Ordinan (rang alinga	Cylinuncai	Steel core	Over 6 and less than 175		
Ordinary rope slings	Streamlined	Fibre core	Over 6 and less than 32	Rope diameter range	Rope multiple
	Streamined	Steel core	Over 6 and less than 30	Less than 50	40
		Fibre core	Over 6 and less than 36	Over 50 and less than 56	50
Non-twisting top	e slings			Over 56 and less than 65	60
	Ū.	Steel core	Over 6 and less than 32	over 65	80
Eared rope s	lingo	Fibre core	Over 6 and less than 36		
	siings	Steel core	Over 6 and less than 32		
Endless rope slings		Fibre core	Over 6 and less than 130	Rope diameter range	Rope multiple
				Less than 20	50
	÷	Steel core	Over 6 and less than 125	over 20 and less than 40	60
				over 40	80

•Please provide the following information when placing your order.

(1)Kind of rope

(1) Rope construction

(2) Kind of lay (in the case of a non-torsion rope ring whether or not the S lay and the Z lay should be used together)

- (3) Rope diameter
- (4) By kind (G grade or A grade or B grade)

(5) Whether coating is required or not (naked or galvanized)

2Kind of product

- (1) Ordinary rope slings
- (2) Non-torsion rope slings
- (3) Eared rope slings
- (4) Endless rope slings
- (5) Others (specify with a drawing)

③Kind of clamp (in the case of ordinary rope slings)

- (1) Cylindrical (item normally used)
- (2) Streamlined

(Type of eye part for both ends (in the case of ordinary rope slings and non-torsion rope slings

- (1) No Thimble/slings on both ends ... 2 L type
- (2) Thimble/slings on both ends ... 2 T type
- (3) Thimble/slings on one end ... LT type

(4) Others (specify with a drawing or make clear on the order sheet)

5Dimensions

(1) In the case of ordinary rope slings and a non-torsion rope slings

Specify the A dimension (total length) of Fig. 1 or Fig. 2, the B dimension (major axis of the eye) and the C dimension (minor axis of the eye)

Fig. 1 Ordinary rope slings

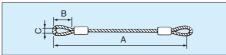
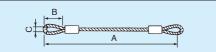
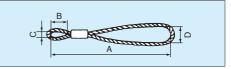



Fig. 2 Non-torsion rope slings


If there is no specification as concerns the C dimension, the O dimension will be made.

(2) In the case of eared rope slings

Specify the A, B, C and D dimension of Fig. 3.

If there are no specification as concerns the C dimension and the D dimension, the 0 dimension will be made.

Fig. 3 Eared rope slings

(3) In the case of endless rope slings

Specify the inner circumference length of Fig. 4. Moreover, depending on the kind of core and the rope diameter, the shape will be as shown in Table 2.

Fig. 4 Endless rope slings

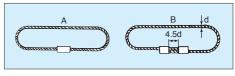


Table 2 Endless rope slings

Kind of core	Rope diameter mm	Shape
With fibre core	Less than 40	Fig. 4 A
With lible core	Items exceeding 40	Fig. 4 B
With steel core	Under 38	Fig. 4 A
with steer core	Items exceeding 38	Fig. 4 B

6Others

Please consult this company if a TOYO-LOK other than an aluminum alloy heterogenous tube, such as a heterogenous steel tube is desired.

2 SINGLE-LOCK (Swage Socket)

The SINGLE-LOCK is the product name of a rope product of this company whose ends are swage processed.

In the past, compression prevention (TOYO-LOK), socket stopper and eye splice, among others, were mainly used in processing the rope ends. However, of late, the swaging processing is starting to be used, considering the reliability such as the processing strength.

To meet this demand, the SINGLE-LOCK which has the following characteristics was developed by this company.

Characteristics

(a)The rope can be locked completely

As the rope is cold worked, the building efficiency is 100% and the rope is not harmed.

(b)Lightweight and easy to use

An epochal lightweight rope has been designed which is easy to attach to all kinds of equipment and machines.

(c)Accurate length

Errors in length is small and the dimensions are accurate.

(d)Also applicable for machine parts

As the rope can be adapted to various kinds of fasteners, as desired, it has various kinds of uses as a machine part.

📕 Main Uses

•Various kinds of construction and industrial equipment

Earth drill winch use rope, rock shovel impact absorbing rope, truck crane pendant rope, compact movable crane winch rope, loading arm for oil hauling equipment, ropes for car park lifts and ropes for nuclear furnace elevators.

Suspension bridges

Suspension rope, fixing rope, wind resisting rope, wind resisting stay rope, hand railing rope, etc.

Suspended structures

Main rope, guard rope, suspension rope, etc.

•Sea wall pile supports

Main rope (utility model No. 862105)

Specifications

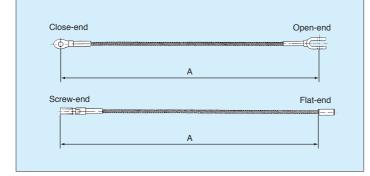
(a)As standard types, there are the eye end, the fork end, the screw end and the flat end.

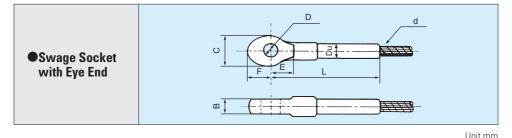
Other shape metal fittings can also be made, on request.

(b)The standard material uses is the SCM415 (JIS G 4053) but the stainless steel SUS304 (JIS G 4303) can also be made, on request.

(c)The standard rope used all have a steel core but fibre core ropes can be provided, on request.

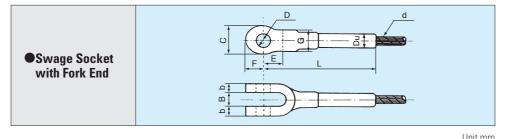
•When ordering, please specify the following items

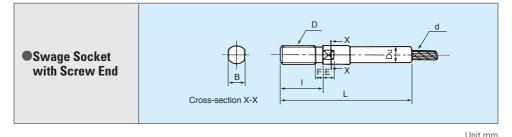

(1)Kind of rope (construction, lay method, diameter, kind required, whether coating is required or not)(2)Kind of product


Shape of both ends

(3) Dimensions

The A dimensions shown in Fig. 5


Fig. 5 Examples of SINGLE-LOCK dimensions


Diameter of applicable rope d	В	С	D	Du	E	F	L (reference dimension)
6(6.3)	10	24	13	10	23	13	82
8	12	28	16	12	27	17	98
9	14	31	18	14	28	18	104
10	15	34	19	16	30	20	112
11.2	17	37	21	18	32	22	122
12	18	41	23	20	34	24	130
12.5	19	42	24	20	35	25	134
14	21	46	26	22	38	28	148
16	24	52	29	26	41	31	165
18	27	58	33	28	44	34	183
20	30	64	36	32	48	38	201
22(22.4)	34	72	41	34	52	42	220
24	36	76	43	38	55	45	237
25	38	79	45	38	57	47	246
26	39	81	46	40	58	48	254
28	42	89	50	44	62	52	272
30	45	94	53.5	46	66	56	291
31.5(32)	48	101	57.5	50	74	59	313
33.5(34)	51	106	60.5	52	78	63	328
35.5(36)	54	113	64.5	56	82	67	349
37.5(38)	57	118	67.5	58	85	70	367
40	60	125	71.5	62	89	74	385
42(42.5)	64	131	75.5	66	92	77	403
44	66	137	78.5	68	96	81	421
45	68	141	80.5	70	98	83	430
46	69	142	81.5	72	99	84	438
47.5(48)	72	150	85.5	74	104	89	457
50	75	155	88.5	78	107	92	475

(Remarks) Diameters in parenthesis () are common to both.

Diameter of applicable rope d	В	b	С	D	Du	E	F	G	Unit mm L (reference dimension)
6(6.3)	10.5	5	24	13	10	24	13	16	94
8	14	6	28	16	12	28	17	18	105
9	16	7	31	18	14	30	18	20	111
10	17	8	34	19	16	39	20	23	129
11.2	19	9	37	21	18	42	22	26	141
12	20	9	41	23	20	44	24	28	149
12.5	21	10	42	24	20	46	25	28	155
14	23	11	46	26	22	50	28	31	171
16	26	12	52	29	26	54	31	37	188
18	29	14	58	33	28	59	34	40	212
20	32	15	64	36	32	64	38	45	232
22(22.4)	36	17	72	41	34	70	42	49	255
24	38	18	76	43	38	74	45	54	274
25	40	19	79	45	38	77	47	55	285
26	41	20	81	46	40	79	48	56	295
28	44	21	89	50	44	84	52	62	315
30	47	23	94	53.5	46	90	56	65	338
31.5(32)	50	24	101	57.5	50	99	59	70	362
33.5(34)	53	26	106	60.5	52	105	63	74	384
35.5(36)	56	27	113	64.5	56	110	67	79	404
37.5(38)	60	29	118	67.5	58	115	70	83	426
40	63	30	125	71.5	62	121	74	87	447
42(42.5)	67	32	131	75.5	66	126	77	93	472
44	69	33	137	78.5	68	131	81	96	489
45	71	34	141	80.5	70	134	83	99	500
46	72	35	142	81.5	72	135	84	101	509
47.5(48)	75	36	150	85.5	74	142	89	105	531
50	78	38	155	88.5	78	146	92	110	552
(Remarks) Diameters in pare	enthesis ()	are commo	n to both.						

(Remarks) Diameters in parenthesis () are common to both.

Diameter of applicable rope d	В	D	Du	E	F	I	Unit mm L (reference dimension)
6(6.3)	9	M12×1.75	10	7	6	39	99
8	12	M14×2	12	8	7	39	114
9	14	M16×2	14	10	8	45	129
10	14	M16×2	16	10	8	45	137
11.2	17	M18×2.5	18	11	9	50	151
12	19	M20 × 2.5	20	12	10	56	164
12.5	19	M20 × 2.5	20	12	10	56	167
14	22	M22 × 2.5	22	13	11	62	185
16	24	M27 × 3	26	16	14	76	216
18	24	M27 × 3	28	16	14	76	231
20	30	$\begin{array}{c} M33 \times 3.5 \\ M33 \times 3.5 \\ M36 \times 4 \\ M36 \times 4 \\ M39 \times 4 \end{array}$	32	20	17	92	265
22	30		34	20	17	92	279
22.4	32		34	22	18	101	293
24	32		38	22	18	101	305
25	36		38	23	20	109	321
26 28 30 31.5 32	36 41 41 46 46	$\begin{array}{c} M39 \times 4 \\ M45 \times 4.5 \\ M45 \times 4.5 \\ M48 \times 5 \\ M48 \times 5 \end{array}$	40 44 46 48 50	23 27 27 29 29	20 23 23 24 24 24	109 126 126 134 134	328 363 378 398 402
33.5 34 35.5 36 37.5	50 50 55 55 55	$\begin{array}{c} M52 \times 5 \\ M52 \times 5 \\ M56 \times 5.5 \\ M56 \times 5.5 \\ M56 \times 5.5 \\ M56 \times 5.5 \end{array}$	52 52 54 56 58	31 31 34 34 34	26 26 28 28 28 28	146 146 157 157 157	427 430 455 458 469
38	55	$\begin{array}{c} M56 \times 5.5 \\ M60 \times 5.5 \\ M64 \times 6 \\ M64 \times 6 \\ M68 \times 6 \end{array}$	58	34	28	157	473
40	55		62	36	30	168	500
42	60		66	38	32	179	527
42.5	60		66	38	32	179	531
44	65		68	41	34	190	556
45	65	M68 × 6	70	41	34	190	563
46	65	M68 × 6	70	41	34	190	570
47.5	65	M68 × 6	70	41	34	190	581
48	65	M68 × 6	72	41	34	190	584
50	70	M72 × 6	78	43	36	202	613
(Bamarka) The figures about							

(Remarks) The figures shown in column I are subject to change.

•Swage Socket with Flat End	
-----------------------------	--

Diameter of applicable rope d	В	С	Unit mm Du
8 9 10 11.2 12	48 54 60 67 72	1 1 1 1 1 1	18 20 20 22 24
12.5 14 16 18 20	75 84 96 108 120	1 1 1.5 1.5	26 28 32 36 40
22 22.4 24 25 26	132 134 144 150 156	1.5 1.5 1.5 1.5 2	42 44 48 48 52
28 30 31.5 32 33.5	168 180 189 192 201	2 2 2 2 2	54 58 60 62 64
34 35.5 36 37.5 38	204 213 216 225 228	2 2 2 2 2 2	66 68 68 70 72
40 42 42.5 44 45	240 252 255 264 270	2 2.5 2.5 2.5 2.5 2.5	76 80 80 84 86
46 47.5 48 50	276 285 288 300	2.5 2.5 2.5 2.5	86 88 88 92

3 Socket Processing

There are various methods for processing the ends of the rope but for ropes that have important uses and those that are used for a long period, at a certain place, there is the socket processing method which is the most safe and accurate.

In this method, a melted alloy is poured into the rope end socket and the rope and the socket made one.

This company with its many years of experience and high technologies is receiving wide trust for its processing method of using melted metals, a method that has become firmly established.

• At the time of ordering, please specify the following.

(1) The workplace (in the case of local work)

(2) Time of work (in the case of local work)

(3) Purpose of using the rope

(4)Kind of rope required (construction, diameter, kind, whether coating required or not)

(5) Shape of socket, dimensions

If there is no specification, the TSK socket (see Page 92) of this company will be used.

1TSK Socket

Conventional socket were standardized as ship use wire sockets (JIS F 3432) but the uses and target ropes were limited. To this, the TSK sockets of this company, while having clear uses, has an assured strength and an epochal light weight. (See Table 1)

Table 1 Comparison of the unit mass of the ship use wire socket and the TSK socket

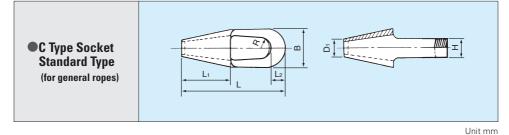
Socket		Ship use wire socket O type kg	TSK socket O shape (standard type) kg		
Target rop	e	6×19galvanized	Strand rope		
Applicable	20	2.1	1.5		
rope diameter	40	18.0	11.0		
mm	60	59.4	36.0		

TSK Socket Specifications

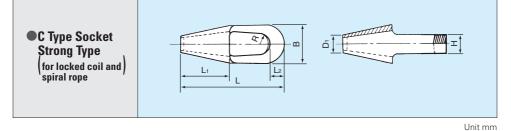
(1) The kinds of sockets are divided into the standard type and the strong type, according to the breaking force of the rope. There are tow types for each, or the closed socket (C type) and the open socket (O type). The target ropes for the socket type are shown in Table 2.

Table 2 Target	topes	for 1	the	TSK	socket	type
----------------	-------	-------	-----	-----	--------	------

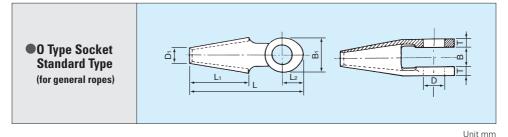
Туре	Target rope	
Standard type	O type	Strand rope
Standard type	C type	Strand Tope
Strong tupo	O type	Spiral rope
Strong type	C type	Locked coil rope

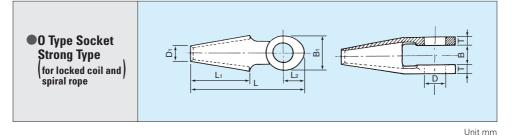

(2) The material used for the socket is more than equal to the S35C (JIS G 4051) and SCMn2A (JIS G 5111).

(3) The material used for the O type pin is more than equal to the S35C (JIS G 4051).

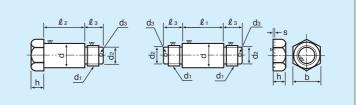

(Note) On request, zinc coated stainless steel sockets can also be made.

Also, on request, specially designed sockets can be made.

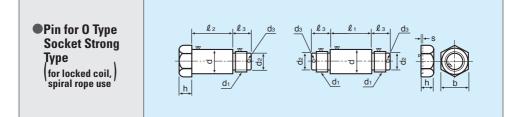

Moreover, as concerns NS sockets for bridges, please refer to separate catalog "NS Socket".


Diameter of applicable rope	L	Lı	L2	D1	В	Н	R	(Reference) Unit mass kg
20	200	92	28	more than 34	72	30	22	1.7
22	220	102	33	36	82	32	23	2.4
24	240	112	34	40	86	36	26	3.0
26	260	122	37	42	94	38	27	3.9
28	280	132	39	44	100	42	29	4.6
30	298	140	43	48	108	44	31	5.9
32	320	152	45	50	116	48	33	7.2
34	336	158	46	54	120	52	36	8.1
36	358	168	51	56	128	54	37	9.8
38	376	176	52	60	134	58	40	10
40	395	188	57	62	144	58	41	14
42	415	198	58	64	148	62	44	15
44	435	206	63	68	158	64	45	18
46	455	216	65	70	162	68	48	20
48	475	228	67	72	170	70	49	23
50	495	236	69	76	178	74	51	26
52	515	244	71	80	184	79	53	29
54	530	252	75	84	192	80	55	33
56	555	264	76	86	196	84	58	36
58	570	274	80	88	206	86	60	40
60	595	282	82	92	212	90	62	45
62	610	292	84	94	218	92	64	48
64	635	306	88	94	226	96	66	54
66	650	312	90	98	232	98	68	58
68	675	322	92	100	238	102	70	63
70	690	330	96	106	246	106	72	70
72	710	342	98	106	252	108	74	75
74	730	352	100	108	258	110	76	80
76	745	360	102	114	266	114	78	88
78	770	370	106	116	272	118	80	96
80	790	380	110	118	282	118	82	104
82	810	390	112	120	288	122	84	112
84	830	400	115	124	294	124	85	120
86	850	410	116	126	302	128	88	129
88	870	420	119	128	308	130	89	137
90	890	430	122	130	314	134	92	146
92	910	440	124	136	322	138	94	158
94	930	448	126	138	328	140	96	166
96	950	460	130	140	336	144	98	179
98	960	466	132	144	342	146	100	188
100	990	478	134	146	348	150	102	200

Diameter of applicable rope	L	Lı	L2	D1	В	Н	R	(Reference) Unit mass kg
20	242	114	34	more than 36	86	34	26	2.9
22	264	126	36	40	94	38	28	3.9
24	292	142	40	42	102	42	30	5.0
26	316	152	42	44	108	46	32	6.1
28	342	164	47	48	118	50	35	8.1
30	362	174	49	54	126	54	37	9.9
32	386	188	53	54	136	56	39	12
34	412	200	56	56	142	60	42	14
36	432	210	58	60	150	64	44	16
38	458	222	61	64	158	68	47	19
40	485	236	65	68	168	70	49	23
42	505	248	69	70	176	72	51	26
44	525	258	71	74	184	76	53	30
46	550	270	74	78	192	80	56	34
48	585	286	77	78	198	84	59	38
50	605	296	79	82	206	88	61	43
52	625	306	84	84	216	90	64	48
54	650	318	86	88	224	94	66	54
56	675	332	90	92	232	98	68	61
58	700	344	91	94	238	102	71	66
60	720	356	95	96	248	106	73	74
62	745	368	98	100	256	110	76	82
64	770	382	102	102	264	112	78	90
66	795	394	106	106	272	116	80	99
68	820	406	107	110	280	120	83	108
70	840	416	111	114	288	124	85	118
72	870	430	112	114	294	128	88	126
74	890	442	117	116	304	130	89	137
76	915	454	120	120	312	134	92	149
78	945	466	123	122	318	138	95	159
80	970	480	127	126	328	140	97	174
82	990	490	129	130	336	144	99	187
84	1020	506	132	132	344	148	102	201
86	1040	516	136	134	352	150	104	215
88	1060	528	138	138	360	154	106	230
90	1090	540	143	142	370	158	109	250
92	1110	554	145	144	378	162	111	265
94	1140	564	148	148	384	166	114	282
96	1160	578	152	148	394	168	116	300
98	1180	590	154	152	402	172	118	319
100	1210	602	158	154	408	176	120	337



Diameter of	L	Lı	L2	D1	B1	В	т	D	Unit mm (Reference) Unit mass
applicable rope									Ký
20	190	92	38	more than 34	66	34	16	38	1.5
22	204	102	40	36	72	36	18	41	1.9
24	224	112	44	40	78	40	19	45	2.4
26	244	122	48	42	84	42	21	48	3.2
28	266	132	52	44	90	46	22	52	3.8
30	278	140	54	48	96	48	24	55	4.6
32	300	152	58	50	104	52	26	59	5.8
34	316	158	62	54	110	56	27	63	6.9
36	336	168	66	56	114	58	28	66	7.7
38	356	176	70	60	122	62	30	70	9.4
40	370	188	72	62	128	64	32	73	11
42	390	198	76	64	134	68	33	77	12
44	405	206	78	68	140	70	35	80	14
46	430	216	84	70	146	74	36	84	16
48	445	228	86	72	152	76	38	87	18
50	465	236	90	76	158	80	39	90	20
52	485	244	94	80	166	84	41	94	24
54	495	252	96	84	172	86	43	97	26
56	520	264	100	86	178	90	44	101	29
58	535	274	102	88	184	92	46	105	32
60	555	282	108	92	190	96	47	109	36
62	575	292	110	94	196	98	49	112	39
64	595	306	114	94	202	102	50	116	42
66	610	312	116	98	208	104	52	119	46
68	635	322	122	100	214	108	53	123	51
70	645	330	124	106	222	112	55	127	56
72	670	342	128	106	226	114	56	130	60
74	690	352	132	108	232	116	58	133	65
76	700	360	134	114	240	120	60	137	72
78	720	370	138	116	246	124	61	140	77
80	740	380	142	118	252	126	63	144	82
82	760	390	146	120	258	130	64	147	89
84	780	400	148	124	264	132	66	150	96
86	800	410	152	126	270	136	67	154	102
88	820	420	156	128	276	138	69	157	110
90	840	430	160	130	282	142	70	161	117
92	850	440	162	136	290	146	72	165	126
94	870	448	166	138	296	148	74	168	135
96	890	460	170	140	302	152	75	172	142
98	910	466	172	144	308	154	77	175	153
100	930	478	176	146	314	158	78	179	161



Diameter of applicable rope	L	Lı	L2	D1	B1	В	т	D	Unit mm (Reference) Unit mass kg
20	226	114	44	more than 36	76	38	19	45	2.3
22	248	126	48	40	84	42	21	49	3.2
24	276	142	52	42	92	46	23	53	4.2
26	300	152	58	44	98	50	24	57	5.1
28	322	164	62	48	106	54	26	62	6.5
30	342	174	66	54	114	58	28	66	8.2
32	362	188	68	54	120	60	30	69	9.1
34	390	200	74	56	126	64	31	74	11
36	410	210	78	60	134	68	33	78	13
38	432	222	82	64	142	72	35	82	15
40	455	236	86	68	150	76	37	87	18
42	480	248	90	70	156	78	39	90	21
44	500	258	94	74	164	82	41	94	24
46	520	270	98	78	172	86	43	99	28
48	550	286	104	78	178	90	44	104	31
50	570	296	108	82	186	94	46	108	35
52	590	306	112	84	192	96	48	112	38
54	615	318	116	88	200	100	50	116	43
56	640	332	120	92	208	104	52	120	49
58	660	344	124	94	214	108	53	125	53
60	680	356	128	96	222	112	55	129	59
62	705	368	132	100	230	116	57	133	66
64	730	382	136	102	236	118	59	137	72
66	750	394	140	106	244	122	61	141	80
68	775	406	144	110	252	126	63	145	88
70	795	416	148	114	260	130	65	149	96
72	825	430	154	114	266	134	66	152	103
74	845	442	158	116	272	136	68	157	110
76	865	454	162	120	280	140	70	162	120
78	895	466	168	122	286	144	71	166	129
80	920	480	172	126	294	148	73	170	141
82	930	490	174	130	302	152	75	174	151
84	960	506	178	132	310	156	77	179	163
86	980	516	182	134	316	158	79	182	173
88	1000	528	186	138	324	162	81	186	187
90	1030	540	190	142	332	166	83	191	202
92	1050	554	196	144	338	170	84	195	211
94	1070	564	200	148	346	174	86	199	229
96	1100	578	204	148	352	176	88	203	240
98	1120	590	208	152	360	180	90	207	257
100	1140	602	212	154	366	184	91	211	269

 Pin for O Type Socket Standard Type (general rope use)

											Unit mm
Diameter of applicable rope	d	b	h	L 1	l2	l 3	d1	d2	s	d3	(Reference) ^{Unit} mass kg
20 22 24 26 28	37.5 40.5 44.5 47.5 51	50 55 60 65 70	20 21 23 25 27	69 77 83 89 95	68 75 81 87 93	30 33 35 37 39	M 33×3.5 M 36×4 M 39×4 M 42×4.5 M 45×4.5	26 28 31 33 36	23333	5 6.3 6.3 6.3 6.3	1.4 1.8 2.3 2.8 3.5
30 32 34 36 38	54 58 62 65 69	75 80 80 85 90	29 31 31 34 36	101 109 115 119 127	99 107 113 117 125	41 47 47 50 52	$\begin{array}{ccc} M & 48 \times 5 \\ M & 52 \times 5 \\ M & 52 \times 5 \\ M & 56 \times 5.5 \\ M & 60 \times 5.5 \end{array}$	38 42 42 45 49	30000	6.3 8 8 8 8	4.3 5.3 5.8 6.8 8.2
40 42 44 46 48	72 76 79 83 86	95 100 100 105 110	38 40 40 42 46	134 140 146 152 158	132 138 144 150 156	54 56 56 62 66	M 64×6 M 68×6 M 68×6 M 72×6 M 76×6	52 56 56 60 64	4 4 4 4	8 8 10 10	9.5 11 12 14 16
50 52 54 56 58	89 93 96 99.5 103.5	115 115 120 120 130	48 48 50 50 54	164 172 178 184 190	162 170 176 182 188	68 68 70 70 74	M 80×6 M 80×6 M 85×6 M 85×6 M 90×6	68 68 73 73 78	4 4 4 4	10 10 10 10 10	18 19 21 22 26
60 62 64 66 68	107.5 110.5 114.5 117.5 121.5	135 135 145 150 150	57 57 60 63 63	196 202 208 214 220	194 200 206 212 218	83 83 86 89 89	M 95×6 M 95×6 M100×6 M105×6 M105×6	83 83 88 93 93	4 4 4 4	13 13 13 13 13 13	30 32 36 40 42
70 72 74 76 78	125.5 128.5 131.5 135.5 138.5	155 165 165 170 170	65 69 69 72 72	228 232 238 246 252	226 230 236 244 250	91 95 95 98 98	M110×6 M115×6 M115×6 M120×6 M120×6	98 103 103 108 108	4 4 4 4	13 13 13 13 13 13	46 53 54 60 62
80 82 84 86 88	142.5 145.5 148.5 152.5 155.5	180 185 185 195 195	76 78 78 81 81	258 264 270 276 282	256 262 269 274 280	102 104 104 113 113	M125×6 M130×6 M130×6 M135×6 M135×6	113 118 118 123 123	4 4 4 4	13 13 13 16 16	70 75 77 87 90
90 92 94 96 98	159.5 163.5 166.5 170.5 173.5	200 210 210 215 220	84 87 87 90 93	288 296 302 308 314	286 294 300 306 312	116 119 119 122 125	M140 × 6 M145 × 6 M145 × 6 M150 × 6 M155 × 6	128 133 133 138 143	4 4 4 4	16 16 16 16 16	97 108 111 119 128
100	177.5	220	93	320	318	125	M155×6	143	4	16	131

											Unit mm
Diameter of applicable rope	d	b	h	ℓ 1	ll2	l3	d1	d2	s	d3	(Reference) Unit mass kg
20 22 24 26 28	44.5 48.5 52 56 61	60 65 70 75 80	23 25 27 29 31	81 89 97 103 111	79 87 95 101 109	35 37 39 41 47	M 39×4 M 42×4.5 M 45×4.5 M 48×5 M 52×5	31 33 36 38 42	00000	6.3 6.3 6.3 6.3 8	2.3 2.9 3.7 4.5 5.7
30 32 34 36 38	65 68 73 77 81	85 90 95 100 105	34 36 38 40 42	119 125 132 140 148	117 123 130 138 146	50 52 54 56 62	$\begin{array}{c} M & 56 \times 5.5 \\ M & 60 \times 5.5 \\ M & 64 \times 6 \\ M & 68 \times 6 \\ M & 72 \times 6 \end{array}$	45 49 52 56 60	3 3 4 4 4	8 8 8 10	6.9 8.1 9.7 11 13
40 42 44 46 48	86 89 93 98 102.5	110 115 115 120 130	46 48 48 50 54	156 162 170 178 184	154 160 168 176 182	66 68 68 70 74	M 76×6 M 80×6 M 80×6 M 85×6 M 90×6	64 68 68 73 78	4 4 4 4	10 10 10 10 10	16 18 19 22 26
50 52 54 56 58	106.5 110.5 114.5 118.5 123.5	135 135 145 150 155	57 57 60 63 65	192 198 206 214 220	190 196 204 212 218	83 83 86 89 91	M 95×6 M 95×6 M100×6 M105×6 M110×6	83 83 88 93 98	4 4 4 4	13 13 13 13 13 13	30 32 37 41 45
60 62 64 66 68	127.5 131.5 135.5 139.5 143.5	155 165 170 180 180	65 69 72 76 76	228 236 242 250 258	226 234 240 248 256	91 95 98 102 102	M110×6 M115×6 M120×6 M125×6 M125×6	98 103 103 113 113	4 4 4 4	13 13 13 13 13 13	48 55 60 68 71
70 72 74 76 78	147.5 152.5 155.5 160.5 164.5	185 195 195 200 210	78 81 81 84 87	266 272 278 286 292	264 270 276 284 290	104 113 113 116 119	M130×6 M135×6 M135×6 M140×6 M145×6	118 123 123 128 133	4 4 4 4	13 16 16 16 16	77 88 90 98 109
80 82 84 86 88	168.5 172.5 177.5 180.5 184.5	215 220 220 230 235	90 93 93 96 99	300 308 316 322 330	298 306 314 320 328	122 125 125 128 131	M150 × 6 M155 × 6 M155 × 6 M160 × 6 M165 × 6	138 143 143 148 153	4 4 4 4	16 16 16 16 16	118 127 132 143 154
90 92 94 96 98	189.5 193.5 197.5 201 205	245 245 250 260 260	102 102 105 108 108	338 344 352 358 366	336 342 350 356 364	134 134 137 140 140	M170 × 6 M170 × 6 M175 × 6 M180 × 6 M180 × 6	158 158 163 168 168	4 4 4 4	16 16 16 16 16	169 174 186 201 207
100	209	265	111	372	370	151	M185×6	173	4	20	221

Rope	Diameter	Compar	ison	Chart
nopo	Diamotor	oompui		Unuit

mm	in (approx.)	in (approx.)	mm	in (approx.)	in (approx.)
	0.118	1/8	40		
3			42	1.654	4 0/4
4	0.157	5/32	44	1.732	1 3/4
5	0.197	3/16	46	1.811	4 7/0
6	0.236	1/4	48	1.890	1 7/8
7	0.276	9/32	50	1.969	2
8	0.315	5/16	52	2.047	2 1/16
9	0.354	3/8	54	2.126	2 1/8
10	0.394	13/32	56	2.205	
11	0.433	7/16	58	2.284	2 1/4
12	0.472	15/32	60	2.362	2 3/8
13	0.512	1/2	62	2.441	2 7/16
14	0.551	9/16	64	2.526	2 1/2
16	0.630	5/8	65	2.559	2 9/16
17	0.669	11/16	66	2.598	2 5/8
18	0.709	, -	68	2.677	2 11/16
19	0.748	3/4	70	2.756	2 3/4
20	0.787		72	2.835	2 13/16
21	0.827	13/16	74	2.913	2 7/8
22	0.866	7/8	76	2.992	3
23	0.906	29/32	78	3.071	3 1/16
24	0.945	15/16	80	3.150	3 1/8
25	0.984	1	82	3.228	3 1/4
26	1.024		84	3.307	3 5/16
27	1.063	1 1/16	86	3.386	3 3/8
28	1.102	1 1/8	88	3.465	3 7/16
30	1.181	1 3/16	90	3.543	3 1/2
32	1.260	1 1/4	92	3.622	3 5/8
34	1.339	, .	94	3.701	3 11/16
35	1.378	1 3/8	96	3.780	3 3/4
36	1.417		98	3.858	3 7/8
38	1.496	1 1/2	100	3.937	4
40	1.575				

Wire Gage Comparison Chart

 S.W.G.
 British Imperial Standard Wire Gage.

 B.W.G.
 Birmingham Wire Gage.

 B.& S.
 Brown and Sharpe Wire Gage.

 AISI S.W.G.
 American Iron and Steel Institute Steel Wire Gage.

 J. de P.
 Paris Wire Gage.

No.	S.W.G.	B.W.G.	B.& S.	AISI S.W.G.	J. de P.
	mm	mm	mm	mm	mm
000000 00000 0000 000 000 00	11.785 10.972 10.159 9.448 8.839 8.229		14.73 13.12 11.68 10.40 9.266 8.255	11.220 10.934 10.003 9.208 8.407 7.785	(PP) 0.40 (P) 0.50
1	7.620	7.620	7.348	7.188	0.60
2	7.010	7.213	6.543	6.668	0.70
3	6.401	6.579	5.827	6.185	0.80
4	5.893	6.045	5.189	5.723	0.90
5	5.385	5.588	4.620	5.258	1.00
6	4.877	5.156	4.115	4.877	1.10
7	4.470	4.572	3.665	4.496	1.20
8	4.064	4.191	3.264	4.115	1.30
9	3.658	3.759	2.906	3.767	1.40
10	3.251	3.404	2.588	3.429	1.50
11	2.946	3.048	2.304	3.061	1.60
12	2.642	2.769	2.052	2.680	1.80
13	2.337	2.413	1.829	2.324	2.00
14	2.032	2.108	1.628	2.032	2.20
15	1.829	1.829	1.450	1.829	2.40
16	1.626	1.651	1.290	1.588	2.70
17	1.422	1.473	1.151	1.372	3.00
18	1.219	1.245	1.024	1.207	3.40
19	1.016	1.067	0.9116	1.041	3.90
20	0.9144	0.886	0.8128	0.884	4.40
21	0.8128	0.8128	0.7239	0.805	4.90
22	0.7112	0.7109	0.6426	0.726	5.40
23	0.6096	0.6347	0.5740	0.655	5.90
24	0.5588	0.5585	0.5105	0.584	6.40
25	0.5080	0.5078	0.4547	0.518	7.00
26	0.4572	0.4570	0.4039	0.460	7.60
27	0.4166	0.4062	0.3607	0.439	8.20
28	0.3759	0.3555	0.3200	0.411	8.80
29	0.3454	0.3300	0.2875	0.381	9.40
30	0.3150	0.3046	0.2540	0.356	10.00
31	0.2946	0.2539	0.2268	0.335	
32	0.2743	0.2286	0.2019	0.325	
33	0.2540	0.2031	0.1798	0.300	
34	0.2337	0.1777	0.1600	0.264	
35	0.2134	0.1269	0.1425	0.241	
36 37 38 39 40	0.1930 0.1727 0.1524 0.1321 0.1219	0.1016	0.1270 0.1130 0.1006 0.0897 0.0798	0.229 0.216 0.203 0.191 0.178	

• • • •			
Volume	SI unit	former unit	
Ctrongth (brooking force)	1N	0.101972 kgf	
Strength (breaking force)	9.80665 N	1 kgf	
Tension (pull strength) and	1N/mm ² [=1MPa=0.1hbar]	0.101972 kgf/mm ²	
flexibility coefficient	9.80665N/mm ²	1kg/mm ²	
	1N · m	0.101972 kgf • m	
Torque	9.80665 N · m	1kgf ∙ m	
Production volume and amount used	1kg(1t)	1kg(1t)	
Unit mass	1kg/m(mass)	1kg/m(weight)	
Coating adherence volume	1g/m ²	1g/m ²	
	1J	0.238889cal [=0.101972×10 ⁺¹ kgf · m]	
Heat value, job, energy	4.18605J	1cal	
	9.80665J	1kgf ⋅ m	
	1rad	57°17′44″8	
Plane angle	0.01744 rad	1°	

SI Units and MSK Weight (former) Unit Conversion Table (units used daily)

Conversion Table

(1)Conversion of the thickness

 $\begin{array}{l} Circumference \times 0.3183 = Diameter\\ Diameter \ (in) \times 25.4 = Diameter \ (mm)\\ Diameter \times 3.1416 = Circumference\\ Diameter \ (mm) \times 0.1237 = Circumference \ (in)\\ Circumference \ (in) \times 8.0851 = Diameter \ (mm)\\ Diameter \ (mm) \times 0.03937 = Diameter \ (in)\\ \begin{array}{l} \textbf{(2)Conversion of unit mass}\\ kg/m \times 0.67196 = 1b/ft \end{array}$

 $\frac{kg}{ll} \times 0.67196 - 10/lt}{lb/ft} \times 1.4882 = kg/m}$ Unit mass of 100-meter steel wire = [wire diameter (mm)]² × 0.6126(kg) [the weight shall be set as 7.8]

(3)Conversion of the pull strength

kgf/mm² × 0.635 = t/in² kgf/mm² × 1422.3 = 1b/in² t/in² × 1.5748 = kgf/mm² 1b/in² × 0.0007031 = kgf/mm²(100.000 1b/ in² = 70.31kgf/mm²)

(4)Conversion of coating adhesion volume

 $g/m^2 \times 0.0033 = oz (ounce)/ft^2$ $oz/ft^2 \times 305.152 = g/m^2$

Weights and Measures Comparison Table

(1)Comparison table of length

١	∕ard∙Pou	Meter method			
Mile	Yard	Feet	Inch	Meter	Millimeter
2.4403	4,294.9	12,885		3,927.3	
	119.3	357.92		109.09	
	1.988	5.965		1.818	1,818
		0.9942	11.931	0.303	303
1	1,760	5,280		1,609.3	
	1	3	36	0.9144	914.38
		1	12	0.30479	304.79
		0.0833	1	0.0254	25.4
	1.0936	3.281	39.371	1	1,000
			0.0394	0.001	1

One nautical mile = 1,852 meters One fathom = 6.0 feet = 1.829 meters One mil = 0.001 inch = 0.0254 millemeters

(2)Unit mass comparison table

Yard ·	Pound m	ethod	Meter method			
Ton (English)	Pound	Ounce	Ton	Kilogram	Gram	
	1.32277	21.1641		0.6	600	
0.00369	8.2673	132.277	0.00375	3.75	3,750	
		0.13227			3.75	
1	2,240	35,840	1.01605	1,016.05		
	1	16		0.4536	453.59	
		1			28.349	
0.98420	2,204.62		1	1,000		
	2.2046		0.001	1	1,000	
		0.03527		0.001	1	

One ton (U.S.) (short ton) = 2,000 pounds = 907.185 kilograms

(3)Area comparison table									
Yard ·	Pound m	ethod	M	eter meth	od				
Acre	Square feet	Square inch	Are	Square meter	Square Millimeter				
2.4507			99.1736						
0.24507			9.9174	991.736					
	35.584			3.30578					
	0.988457	142.34		0.09183					
1	43,560		40.4671	4,046.71					
	1	144		0.0929					
	0.006944	1			645.160				
0.0247	1,076.42		1	100					
	10.7642		0.01	1					
		0.00155			1				

One hectare = 10,000 square meters

One square mil = 640 acres = 2.58999 square kilometers

(4)Volume comparison table

١	∕ard∙Pou	Meter I	nethod		
Cubic inch	Cubic feet	Gallon (English)	Gallons (U.S.)	Cubic meters	Liters
1,698.2	0.9827	6.1278	7.3514	0.02783	27.8265
	212.26	1,323.6	1,587.9	6.0105	6,010.51
110.04	0.0637	0.3968	0.4765		1.8039
	6.3708	39.676	47.657	0.1804	180.39
1	0.000579				0.01639
1,728	1	6.2290	7.4805	0.0283	28.3168
277.42	0.1606	1	1.2009		4.5459
231.00	0.1337	0.8325	1		3.7854
	35.3147	219.95	264.19	1	1,000
61.024	0.03523	0.2199	0.2642	0.001	1

One bushel (English) = 36.367

WIRE ROPE E-5

Fifth edition published: May, 2014 Copyright Reserved (Not for sale) Published by

TOKYO ROPE MFG. CO., LTD.

6-2, Nihonbashi 3-chome, Chuo-ku, Tokyo, Japan Zip-Code 103-8306 Tel. 81-3-6366-7777 Fax. 81-3-3278-6800 Printed by

۲

SANSHOSHA INC. Sutouku Building. 2-6, Nihonbashi-Hongokucho 3-chome, Chuo-ku, Tokyo, Japan Tel. 81-3-3516-2762 Fax. 81-3-3231-8088 (Reproduction or copying without permission prohibited)

TOKYO ROPE MFG. CO., LTD.

Head Office: 6-2, Nihonbashi 3-chome, Chuo-ku, Tokyo, JAPAN Tel. 81-3-6366-7756 Fax. 81-3-3278-6870

Tokyo Rope (shanghai) Trading Co., Ltd.

RM2008 New Town Center No.83 Lou Shan Guan Road, Shanghai ChinaTel. 86-21-6236-8788Fax. 86-21-6236-8768

Tokyo Rope (hong kong) Co., Ltd.

Suite 610, 6/F, Tower 1, The Gateway, Harbour City, 25 Canton Road, Tsim Sha Tsui, Kowloon, Hong Kong, China Tel. 852-2591-0008 Fax. 852-2591-0900